复杂室内环境下轻量级手势识别算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.7

基金项目:

陕西省重点研发计划(2022GY-074,2022GY-058)项目资助


Lightweight gesture recognition algorithm for complex indoor environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对室内环境背景复杂、手部多样、识别角度多变等因素导致手势识别算法检测率低,算法复杂难以在移动端设备部 署,提出了一种SA-YOLOv8 手势识别算法。首先,利用改进后的CB-ShuffleNet V2轻量级网络作为主干网络提取手势特 征,在保证准确率的同时降低模型参数与计算量,方便模型部署在智能家居设备,保证识别的实时性。其次,在Neck 层引入 渐进特征金字塔网络(AFPN) 实现手势信息的多尺度特征融合,通过自适应空间融合操作避免复杂因素干扰,保留手部细节 信息,提高模型鲁棒性。最后,在损失函数阶段引入 Shape-IoU损失函数,增加模型对非规则手势与远距离小尺度手势识别的 敏感力与准确性。实验结果表明,SA-YOLOv8 在ASL-6 与完整 ASL数据集上平均精度均值(mAP)mAP@0.5 分别达到 99.80%与99.83%,相较于原始YOLOv8模型提高了4.47%与4.5%,模型参数量下降80.18%,计算量减少77.46%。改进 后的算法在手势识别方面效果提升明显,且模型更加轻量,适合部署在移动端设备中。

    Abstract:

    To address the low detection rates in gesture recognition algorithms caused by complex indoor environments, diverse hand appearances,and variable recognition angles,and to facilitate deployment on mobile devices,we propose a novel SA-YOLOv8 gesture recognition algorithm.Initially,an improved CB-ShuffleNetV2 lightweight network is utilized as the backbone for extracting gesture features,ensuring accuracy while reducing model parameters and computational load,facilitating real-time recognition on smart home devices.Subsequently,an asymptotic feature pyramid network(AFPN)is integrated into the Neck layer for multi-scale feature fusion of gesture information, employing adaptive spatial fusion operations to mitigate interference from complex factors and preserve detailed hand information,thereby enhancing the model's robustness.Finally,the Shape-IoU loss function is introduced during the loss calculation phase,increasing the model's sensitivity and accuracy for irregular and small-scale gestures at a distance. The experiments demonstrate that SA-YOLOv8 achieves an average detection precision mAP@0.5 of 99.80%on the ASL-6 dataset and 99.83%on the full ASL dataset,marking a 4.47%and 4.5%improvement over the original YOLOv8 model,along with an 80.18%reduction in parameter volume and a 77.46%decrease in computational demand.The improved algorithm shows a significant enhancement in gesture recognition performance and is more lightweight,making it suitable for deployment on mobile devices.

    参考文献
    相似文献
    引证文献
引用本文

师 红 宇,刘 蒙 蒙,杜 文,张 哲 于,李 怡.复杂室内环境下轻量级手势识别算法[J].国外电子测量技术,2024,43(11):27-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-27
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变