基于多源数据融合的GCB故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM561.3;TN015

基金项目:

中国长江电力股份有限公司科研项目(Z522302039)、国家自然科学基金(52277148,52377103)、轨道交通基础设 施性能监测与保障国家重点实验室自主课题(HJGZ2023209) 项目资助


GCB fault diagnosis method based on multi-source data fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于自适应卷积权重学习模块和多源数据融合技术的发电机断路器(GCB) 故障诊断模型。选择GCB 设备 运行时产生的声纹数据、GCB 两侧基波电压频谱图、特高频局放检测图谱作为GCB 设备故障诊断的输入数据;对声纹数据进 行小波变换,生成声纹时频特征图谱;利用卷积神经网络对各类图像进行特征提取;将提取后得到的特征作为输入信息,输入 自适应卷积权重学习的特征融合模块进行特征融合;将融合后的特征输入深度神经网络来进行故障诊断的分类。实验结果 表明,所提出的方法故障诊断查准率、查全率和准确率均很高、对复杂的故障环境有着较强的适应能力。

    Abstract:

    This paper proposes a GCB fault diagnosis model based on adaptive convolutional weights learning module and multisource data fusion technology.The sound pattern data generated during the operation of the GCB equipment,the base wave voltage spectrograms on both sides of the GCB,and the UHF localized discharge detection spectra are selected as the input data for the fault diagnosis of the GCB equipment;the wavelet transform is performed on the sound pattern data to generate the time-frequency feature maps of the sound pattern;a convolutional neural network is utilized to perform feature extraction on various types of images;the extracted features are used as the input information,and are fed into the feature fusion module for adaptive convolutional weight learning to perform feature fusion;the fused features are fed into a deep neural network to classify the fault diagnosis.The fusion module is used for feature fusion;the fused features are fed into the deep neural network for classification of fault diagnosis.The experimental results show that the method proposed in this paper has a high fault diagnosis accuracy,completeness and precision rate,and has a strong adaptability to complex fault environments.

    参考文献
    相似文献
    引证文献
引用本文

王 兴,张 昆,毛 雕,刘 举,鲍 超 斌,徐 礼 荣,陈雅彤,曾 晗.基于多源数据融合的GCB故障诊断方法[J].国外电子测量技术,2024,43(11):135-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-27
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变