残差全连接神经网络在输电塔基边坡风险 评价中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911-34;TP18

基金项目:

国家自然科学基金(U2034203)、南方电网广州局输电线路塔基区域边坡灾害危险性评价与分级研究技术服务科 研项目(SDHZ2022341) 资助


Application of residual neural networks in risk assessment of transmission tower foundation slopes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有输电塔边坡风险评估方法偏重静态地质特征与环境因素,忽略塔基与边坡的耦合作用,难以全面评估输电塔边 坡风险性。为解决这一问题,综合考虑了边坡的危险性和健康性因素,如边坡高度、坡度、塔基与边坡距离、基面情况等,并通 过增强搜索策略的贝叶斯优化算法优化残差全连接神经网络,构建了一种基于贝叶斯优化残差全连接神经网络的输电塔基 边坡风险评价模型。并设置 BP 神经网络、深度全连接神经网络以及未做优化的残差全连接神经网络作为对照组,实验结果 表明,该模型性能显著优于其他模型,其中危险性和健康性评价中的平均绝对误差(MAE) 约为0.0102、0.0081,均方根误差 (RMSE) 为0.0573、0.0551,平均相对误差(MAPE) 低至1.475%和1.451%。该模型能够在日常巡检和降雨情况下提供有 效的分级预警,显著提高输电塔边坡风险评估的准确性和预警能力。

    Abstract:

    The existing risk assessment methods for transmission tower slopes mainly focus on static geological characteristics and environmental factors,overlooking the coupling effect between the tower foundation and the slope. These methods also lack effective response and early warning mechanisms under extreme weather conditions,making it challenging to comprehensively evaluate slope stability.To address this issue,this study integrates slope risk and health factors-such as slope height,slope angle,distance between the tower foundation and the slope,and base conditions- and employs an enhanced Bayesian optimization algorithm to optimize a residual fully connected neural network.A Bayesian-optimized RFCN-based risk assessment model for transmission tower slopes was developed.Comparative experiments were conducted using BP neural networks,deep fully connected neural networks,and unoptimized RFCN as baseline models.The results demonstrated that the proposed model outperformed the others,achieving MAE of approximately 0.0102 and 0.0081,RMSE of0.0573 and 0.0551,and MAPE as low as 1.475%and1.451%for risk and health assessments,respectively.The model provides effective graded early warnings under routine inspections and rainfall,enhancing the accuracy and early warning capability of transmission tower slope risk assessment.

    参考文献
    相似文献
    引证文献
引用本文

芮 焘,段国勇,王彦海,邹英杰,郑武略.残差全连接神经网络在输电塔基边坡风险 评价中的应用[J].国外电子测量技术,2024,43(11):160-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-27
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变