基于CNN-LSTM 的机载雷达电力线塔目标识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.7;TN957.52

基金项目:


Airborne radar target recognition method based on CNN-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂环境下空地小目标识别难题,根据电力塔时空分布特点提出了一种机载雷达目标识别方法。该算法基于卷 积神经网络(convolutional neural network,CNN)和长短期记忆神经网络(long short-term memory,LSTM)构建融合模型,并 引入样本扩充与加权熵等策略,有效避免了样本不均衡导致的模型能力缺陷。采用飞行数据进行验证,实验结果证明所提方 法在复杂背景下虚警率降低至20.5%,准确率提升至80.15%,相较于传统雷达目标检测方法与典型卷积神经网络/长短期记 忆网络具有更高的精度和鲁棒性。所提方法综合考虑直升机低空飞行实际工况,利用人工智能技术敏捷适变的特性实现了 机载防撞雷达对电力塔线目标的高精度识别。

    Abstract:

    In response to the challenge of identifying small targets in complex environments,this paper proposes an airborne radar target recognition method based on the spatial and temporal distribution characteristics of power towers. The algorithm constructs a fusion model using convolutional neural networks(CNN)and long short-term memory (LSTM)networks,and introduces strategies such as sample augmentation and weighted entropy to effectively mitigate the shortcomings of models due to imbalanced samples.Validation is conducted using real flight data,demonstrating that the proposed method reduces false alarm rates to 20.5%and inereases accuracy to 80.15%in complex backgrounds, offering higher precision and robustness compared to traditional radar target detection methods and typical CNN/LSTM networks.Considering practical conditions of helicopter low-altitude flights,the proposed method leverages the agility and adaptability of artificial intelligence technology to achieve high-precision recognition of power tower line targets by airborne collision avoidance radars.

    参考文献
    相似文献
    引证文献
引用本文

梁天辰,石婉君,张晓潇,黄成文渊.基于CNN-LSTM 的机载雷达电力线塔目标识别方法[J].国外电子测量技术,2024,43(12):83-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-18
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变