基于改进Unet网络的炮口火焰分割方法
DOI:
CSTR:
作者:
作者单位:

1.南京理工大学;2.西安近代化学研究所

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:


Muzzle flame segmentation method based on improved Unet network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    炮口火焰是研究发射药性能的依据之一,最常用的方法是通过图像处理技术对炮口火焰进行研究,可利用高速摄影仪法可准确测量炮弹击发过程中炮口火焰的几何特征参数,进而度量发射药的性能。在高速摄影仪法中,为了实现炮口火焰与复杂背景环境的分离,本文摒弃了传统的图像分割算法,采用基于Unet的语义分割模型对炮口火焰进行分割。为了提升炮口火焰的分割效果,引入深度可分卷积与残差结构,对Unet语义分割模型进行优化,经过对比实验验证,模型的准确率由0.965提升到了0.979。

    Abstract:

    Muzzle flame is one of the bases to study the performance of propellants, the most common method to study muzzle flame is through image processing technology, the geometric characteristic parameters of muzzle flame can be accurately measured by using high-speed camera method in the process of projectile firing, and then the performance of propellants can be measured. In the high-speed camera method,this paper abandons the traditional image segmentation algorithm and uses semantic segmentation model based on UNET to segment muzzle flame in order to realize the separation of muzzle flame and complex background environment. A deeply separable convolution and residual structure are introduced, and the Unet semantic segmentation model is optimized in order to improve the segmentation effect of the muzzle flame. After comparison and experiment verification, the accuracy of the model has increased from 0.965 to 0.979.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-09
  • 最后修改日期:2021-03-02
  • 录用日期:2021-03-03
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变