基于CNN+BiLSTM网络的手术流程识别方法
DOI:
CSTR:
作者:
作者单位:

西安工程大学电子信息学院 西安 710600

作者简介:

通讯作者:

中图分类号:

R318

基金项目:

陕西省科技厅项目(2023KJXX-057)、西安工程大学大学生创新创业项目(S202310709089)


Surgical process recognition method based on CNN+ Bi-LSTM networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手术流程识别可以监控手术过程,提高在外科手术时的安全性,也可以应用到手术质量评估和手术训练系统当中。针对手术视频中场景模糊、复杂性高、流程差异大,且传统手术流程识别方法依赖手工注释、效率低下等问题,提出了一种基于卷积神经网络(Convolutional Neural Networks, CNN)与双向长短期记忆(Bidirectional Long Short-Term Memory,BiLSTM)网络融合的手术流程自动识别方法。该方法利用卷积神经网络提取手术视频的空间特征,并通过双向长短期记忆网络捕捉手术阶段序列的时间依赖关系,解决了相邻帧高相关性导致的误识别问题。采用了中值滤波器和数据增强技术增强模型的泛化能力,并通过Adam优化器提升训练效率。在Cholec80数据集上对模型进行验证,离线模式下的手术流程识别准确率达96.16%,在线模式下的准确率为91.84%。实验结果表明,所提出的手术流程识别模型准确率高,能够为手术机器人流程识别提供显著结果方案。

    Abstract:

    To address the issues of blurred scenes, high complexity, and significant differences in surgical processes in surgical videos, as well as the inefficiencies of traditional surgical process recognition methods that rely on manual annotations, this study proposes an automatic surgical process recognition method based on Convolutional Neural Networks (CNN) and Bi-directional Long Short-Term Memory (Bi-LSTM) networks. This method utilizes CNNs to extract spatial features from surgical videos and employs Bi-LSTM networks to capture temporal dependencies, solving the misrecognition problem caused by high correlation between adjacent frames. To enhance the model"s generalization ability, median filtering and data augmentation techniques are applied, and training efficiency is improved using the Adam optimizer. Validation on the Cholec80 dataset shows that the surgical process recognition accuracy reaches 96.16% in offline mode and 91.84% in online mode. The experimental results indicate that the proposed model achieves high accuracy in surgical process recognition and provides significant solutions for surgical robot process recognition.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-29
  • 最后修改日期:2025-01-13
  • 录用日期:2025-01-16
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变