改进的蜣螂优化算法性能分析及其应用
DOI:
CSTR:
作者:
作者单位:

晋中学院

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:


Performance Analysis and Application of Improved Dung Beetle Optimizer Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统蜣螂优化算法(DBO)容易陷入局部最优、收敛较慢、无法平衡局部开发和全局收敛等问题,提出了一种改进的蜣螂优化算法(IDBO)。首先,采用Logistic混沌映射的方法对种群进行随机初始化,结合折射反向学习策略对种群进行优化,增加了种群的多样性;其次,在繁殖阶段,利用螺旋搜索策略对位置更新的公式进行改进,提高了算法的收敛速度;最后在觅食阶段,通过最优值策略引入当前最优值来指导候选解的生成,提升了算法的全局搜索能力。将提出的IDBO算法与其他算法在10个基准测试函数上进行性能比较,验证了IDBO算法的有效性、稳定性和收敛性。此外,将改进的IDBO算法应用于旅行商问题的求解,进一步验证了其实际应用的可行性和有效性。

    Abstract:

    An improved beetle optimization algorithm (IDBO) is proposed to address the problems of traditional beetle optimization algorithm (DBO) being prone to local optima and slow convergence. Firstly, the population is initialized using logistic chaotic mapping, and optimized using the refraction reverse learning strategy to increase the diversity of the population; Secondly, during the breeding stage, the formula for position update was improved using a spiral search strategy, which increased the convergence speed of the algorithm; Finally, during the foraging phase, the current optimal value is introduced through the optimal value strategy to guide the generation of candidate solutions, enhancing the algorithm's global search capability. The proposed IDBO algorithm was compared and analyzed with other algorithms on 10 benchmark test functions to verify its effectiveness, stability, and convergence. In addition, the enhanced IDBO algorithm was utilized to address the traveling salesman problem, further verifying its feasibility and effectiveness in practical applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:2025-01-10
  • 录用日期:2025-01-10
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变