基于解耦式稀疏图增强注意力网络的交通流预测
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学;2.南京信息工程大学自动化学院;3.南京信息工程大学 自动化学院;4.南京信息工程大学 自动化学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP183; U491.1

基金项目:

国家自然科学基金(61273229)


Traffic flow prediction based on decoupled sparse graph enhanced attention network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的交通流预测模型在处理序列中突变现象和非平稳特征时表现有限,未能全面捕捉空间相关性特征,忽略节点间动态关联。针对以上问题,本文提出了一种基于解耦融合框架,结合图增强稀疏卷积注意力网络的预测模型(DSGEAN)。首先将交通流序列解耦为趋势项和波动项,以更好地捕捉其内在规律,分别应用因果卷积和注意力机制感知局部全局时间依赖,利用多图构造增强策略以及全局图注意力的稀疏化设计,关注局部差异,设计位置编码,模拟节点间的动态关联,再实现数据驱动的自适应融合,并采用多监督方式训练预测结果,避免误差累计。在PEMS04和PEMS08两个真实数据集上进行模型的有效性验证,结果显示,其预测精度指标平均绝对误差分别为18.18和13.29,与其他先进模型相比,均有所降低。

    Abstract:

    The existing traffic flow prediction model has limited performance in dealing with abrupt phenomena and non-stationary features in the sequence,and fails to fully capture the spatial correlation features and ignores the dynamic correlation between nodes.To solve the above problems,this paper proposes a prediction model based on decoupling fusion framework combined with graph enhanced sparse convolutional attention network (DSGEAN).Firstly, the traffic flow sequence is decoupled into trend term and fluctuation term to better capture its inherent law.The causal convolution and attention mechanism are respectively applied to perceive local global time dependence,the multi-graph construction enhancement strategy and the sparse design of global graph attention are utilized to pay attention to local differences,the location coding is designed to simulate the dynamic association between nodes,and then the data-driven adaptive fusion is realized.The multi-supervision method is used to train the prediction results to avoid the accumulation of errors.The validity of the model was verified on two real data sets PEMS04 and PEMS08,and the results showed that the average absolute error of the prediction accuracy index was 18.18 and 13.29, respectively, which was lower than other advanced models.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-18
  • 最后修改日期:2025-01-16
  • 录用日期:2025-01-20
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变