基于改进密度峰值优化全局K-means的风电典型场景聚类方法
DOI:
CSTR:
作者:
作者单位:

三峡大学

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

强电磁工程与新技术国家重点实验室开放基金


A typical wind power scene clustering method based on improved density peak optimization global K-means
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电出力不确定性问题,为准确获取具有代表性的风电出力场景,本文提出了一种基于改进密度峰值优化全局K-means算法的典型风电场景聚类方法。首先通过密度峰值聚类算法(Density Peak Clustering Algorithm, DPC)初步确定聚簇中心,而后运用全局K-means(Global K-means, GKM)进行迭代聚类。随后,引入具有全局搜索能力的斑马优化(Zebra Optimization, ZO)方法,用于寻找DPC中的截断距离的最优值。然后,为全面评估所得场景集的稳定性和有效性,本文选取了三个聚类有效性指标并采用熵权Topsis法来进行综合评价。最后,本文使用实际风电数据进行大量的仿真实验与分析。结果表明,本文方法具有更好的DBI、SSE和SC值,能更准确地提取和划分典型的风电场景。

    Abstract:

    In order to accurately obtain representative wind power output scenarios, this paper proposes a typical wind power scenario clustering method based on the improved density peak optimization global K-means algorithm. Firstly, the density peak clustering algorithm (DPC) is used to preliminarily determine the cluster center, and then the global K-means (GKM) is used for iterative clustering. Subsequently, a zebra optimization(ZO) method with global search capability is introduced to find the optimal value of the truncation distance in the DPC. Then, in order to comprehensively evaluate the stability and effectiveness of the obtained scenario set, three clustering effectiveness indexes are selected and the entropy weight Topsis method is used for comprehensive evaluation. Finally, a large number of simulation experiments and analyses are carried out using actual wind power data. The results show that the proposed method has better DBI, SSE and SC values, and can more accurately extract and divide typical wind power scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-26
  • 最后修改日期:2025-01-17
  • 录用日期:2025-01-20
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变