基于CNN-LSTM的机载雷达电力线塔目标识别方法
DOI:
CSTR:
作者:
作者单位:

1.中国西南电子技术研究所;2.解放军总医院医疗保障中心信息科

作者简介:

通讯作者:

中图分类号:

TP391.7

基金项目:


Airborne radar target recognition method based on CNN-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂环境下空地小目标识别难题,本文根据电力塔时空分布特点提出了一种机载雷达目标识别方法。所提方法综合考虑直升机低空飞行实际工况,利用人工智能技术敏捷适变的特性,采用CNN-LSTM改进模型实现了机载防撞雷达对电力塔线目标的高精度识别。本文在样本构建中引入了加权熵与样本扩充等策略,有效避免了样本不均衡导致的模型能力缺陷。实验结果证明,所提方法在复杂背景下相较于传统雷达目标检测方法与典型CNN/LSTM网络具有更高的精度和鲁棒性。

    Abstract:

    Aiming at challenge small target recognition in complex environment, this paper proposes an airborne radar target recognition method based on the spatiotemporal distribution characteristics of power towers. The proposed method comprehensively considers the actual working conditions of helicopter low altitude flight, utilizes the agile and adaptable characteristics of artificial intelligence technology, and adopts the CNN-LSTM improved model to achieve high-precision recognition of power tower line targets by airborne collision avoidance radar. This article introduces strategies such as weighted entropy and sample expansion in sample construction, effectively avoiding model capability defects caused by sample imbalance. The experimental results demonstrate that the proposed method has higher accuracy and robustness compared to traditional radar target detection methods and typical CNN/LSTM networks in complex backgrounds.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-28
  • 最后修改日期:2025-01-09
  • 录用日期:2025-01-10
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变