VoVNet-FCOS道路行人目标检测算法研究
DOI:
CSTR:
作者:
作者单位:

安徽师范大学物理与电子信息学院 安徽 芜湖 241002

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

安徽省自然科学基金(NO.1708085QF133);安徽师范大学创新基金项目(NO.2018XJJ100);安徽省智能机器人信息融合与控制工程实验室资助(IFCIR2020004)。


Research On Pedestrian Target Detection Algorithm on VoVNet-FCOS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对行人目标特殊性和复杂性而导致的目前行人检测算法在速度和精度上不高的问题,提出一种改进的FCOS行人检测算法。首先,在网络基础结构上,为了提高算法精度,以高效型网络VoVNet代替ResNet进行特征的提取,同时在VoVNet上增加了输入到输出的残差连接,从而增强深层特征表达;其次在网络最后的特征层上添加了eSE注意力机制,来提高网络的特征提取能力;最后,在损失函数上,引用GIOU Loss作为回归分支损失函数来解决IOU Loss无法反映预测框与真实框重合程度问题。实验表明,与现有算法相比,改进后的FCOS算法mAP提高了9.5%,速度上也满足实时性要求。

    Abstract:

    Aiming at the problem that the current pedestrian detection algorithm is not high in speed and accuracy due to the particularity and complexity of pedestrian targets, an improved pedestrian detection algorithm based on FCOS is proposed. First of all, in order to improve the accuracy of the algorithm, the efficient network VoVNet is used to replace ResNet for feature extraction. Meanwhile, the input-output residual connection is added on VoVNet to enhance the deep feature expression. Secondly, eSE attention mechanism is added to the last feature layer of the network to improve the ability of feature extraction. Finally, in the loss function, GIOU Loss is used as the regression branch loss function to solve the problem that IOU Loss can not reflect the coincidence degree of prediction box and real box. The experimental results show that compared with the existing algorithms, the improved FCOS algorithm improves the map by 9.5%, and the speed also meets the real-time requirements.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-30
  • 最后修改日期:2021-09-16
  • 录用日期:2021-09-17
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变