基于改进Elman神经网络和模糊控制的智能灌溉算法设计
DOI:
CSTR:
作者:
作者单位:

西安工程大学 电子信息学院 陕西 西安 710600

作者简介:

通讯作者:

中图分类号:

TP273.4

基金项目:

陕西省重点研发计划-一般项目-农业领域-基于物联网技术和专家经验的水肥一体化智能灌溉装备开发(2021NY-192)


Design of Intelligent Irrigation Algorithm Based on Improved Elman Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对以往智能灌溉系统多采用一级模糊控制且专家经验难以结合多种环境因素,导致适用范围小,不能精准灌溉等问题,设计了一种基于改进Elman神经网络和模糊控制的智能灌溉系统。根据作物的种类和种植时间,通过一级模糊控制器得到最佳土壤湿度;根据土壤湿度差值和蒸发蒸腾量,通过二级模糊控制器得到灌溉决策结果,从而达到精准灌溉的目的。传统的蒸发蒸腾量计算方式比较复杂,而Elman神经网络具有稳定性强,动态性好的特点,利用IPSO算法对其优化,解决其容易陷入局部最优和收敛速度慢的问题,该神经网络在作物蒸发蒸腾量的预测方面有较好的效果。实验表明:该系统运行稳定,可实现精准灌溉。

    Abstract:

    In the past, intelligent irrigation systems mostly used first-level fuzzy control and expert experience was difficult to combine various environmental factors, resulting in small application scope and inaccurate irrigation. An intelligent irrigation system based on improved Elman neural network and fuzzy control was designed. According to the type of crop and planting time, the optimal soil moisture is obtained through the first-level fuzzy controller; according to the humidity difference and evapotranspiration, the irrigation decision result is obtained through the second-level fuzzy controller, so as to achieve the purpose of precise irrigation. The traditional evapotranspiration calculation method is more complicated, and the Elman neural network has the characteristics of strong stability and good dynamics. The IPSO algorithm is used to optimize it to solve the problem of easy to fall into the local optimum and slow convergence. There are good results in the prediction of crop evapotranspiration. Experiments show that the system runs stably and can achieve precise irrigation.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-05
  • 最后修改日期:2021-09-29
  • 录用日期:2021-09-30
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变