基于超参数优化的短期电力负荷预测模型
DOI:
CSTR:
作者:
作者单位:

1.北京建筑大学;2.国网锦州供电公司

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家重点研发计划项目(2019YFE0194300), 安徽建筑大学智能建筑与建筑节能安徽省重点实验室开放课题(IBES2020KF06)


Short-term power load forecasting model based on optimization of hyper-parameters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确预测短期电力负荷在精细化电网规划、减少发电成本和提高用电质量等方面具有重要作用。为了大幅度的提高短期电力负荷预测的准确性,本文采用改进粒子群算法(IPSO)优化长短期记忆网络(LSTM),构建了一种新的电力负荷预测模型(IPSO-LSTM)。该模型采用能有效寻找全局最优解的IPSO,解决了LSTM预测电力负荷时超参数难以选取的问题。考虑到粒子群算法中惯性权重和学习因子是固定不变的,这容易导致粒子群在前期掉入局部最优而错过全局最优,本模型中将惯性权重和学习因子由固定值改为非线性变化,以平衡其全局搜索能力和局部寻优能力。通过实际案例数据进行仿真分析,并与PSO-LSTM、LSTM以及反向传播(Back Propagation, BP)神经网络算法的预测结果进行对比,验证了本方法的预测效果更佳。实验表明,所提电力负荷预测模型具有较好的精度和稳定性。

    Abstract:

    Accurate prediction of short-term power load plays an important role in grid planning, reducing power generation costs and improving power quality. In order to greatly improve the accuracy of short-term power load forecasting, an improved particle swarm optimization algorithm (IPSO) is used in this paper to optimize the long and short-term memory network (LSTM) to form a new power load forecasting model (IPSO-LSTM). LSTM is used to predict the power load, but it will encounter the problem of difficult selection of hyper-parameters. IPSO, which can effectively find the global optimal solution, is used to solve this problem. The inertia weight and learning factor in the particle swarm are fixed, which is easy to fall into the local optimum too early and miss the global optimum. The inertia weight and learning factor are changed from a fixed value to a non-linear law to balance its global search ability and local optimization ability. Through simulation analysis of actual case data, and comparing with PSO-LSTM, LSTM and Back Propagation (BP), the results verify that the prediction effect of the model in this paper is better. Experiments show that the proposed power load forecasting model has good accuracy and stability.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-14
  • 最后修改日期:2022-04-17
  • 录用日期:2022-04-20
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变