基于可解释深度学习的电力负荷预测模型
DOI:
CSTR:
作者:
作者单位:

1.重庆邮电大学 经济管理学院;2.徐州工程学院 数学与统计学院;3.江西财经大学 统计学院

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家自然科学基金(71901045),成渝双城经济圈科技创新(KJCX2020027),重庆市教委科学技术研究(KJQN202100604),江西省自然科学基金(20212ACB211003)项目资助


Power load forecasting model based on interpretable deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习模型在时间序列预测中得到了广泛的应用,然而,传统的深度学习点预测模型更多关注未来某个特定时刻的预测值,无法描述复杂时间序列预测的不确定性。此外,大多数深度学习模型的预测过程是不透明的,使用者对深度学习预测模型的内部机理缺乏认识,导致模型预测的可解释性偏低。本文针对上述问题开展如下两方面的研究:第一、引入了分位数回归理论,刻画复杂时间序列预测的不确定性特征;第二、构建可解释深度学习模型并应用于纽约州首府地区的短期电力负荷预测。结果表明本文预测模型在两个数据集上都具有较好的区间预测结果,置信水平为95%时,该模型在1月和7月的PICP值分别为94.28%、93.23%,区间覆盖率趋于置信水平。相比于对比模型,本文模型的预测精度高、泛化能力强,能够提升短期电力负荷预测中的稳定性,可为电网管理者的相关决策提供数据支撑。

    Abstract:

    Deep learning model has been widely used in time series prediction. However, the traditional deep learning point prediction model pays more attention to the predicted value at a certain moment in the future, and cannot describe the uncertainty of complex time series prediction. In addition, the prediction process of most deep learning models is opaque, and users lack understanding of the internal mechanism of deep learning prediction models. As a result, the interpretability of the model prediction is low. To tackle the above issues, this paper carries out the following two aspects of research: Firstly, quantile regression theory is introduced to describe the uncertainty characteristics of complex time series prediction; Secondly, an interpretable deep learning model is constructed and applied to power load prediction in a region of New York State. The results show that the prediction model in this paper has good interval prediction results on the two data sets. The confidence level is 95%, the PICP values of the model in January and July are 94.28% and 93.23%, respectively. The interval coverage tends to the confidence level. Compared with the comparison model, the proposed model has high prediction accuracy and strong generalization ability. It can improve the stability of short-term power load prediction and provide data support for the power grid manager's decision making.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-20
  • 最后修改日期:2023-03-24
  • 录用日期:2023-03-27
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变