基于STM32和DBO-BP的滑坡预警系统
CSTR:
作者:
作者单位:

西安工程大学电子信息学院 西安 710600

中图分类号:

P642.22

基金项目:

国家自然科学(62203344);陕西省技术创新引导专项(2020CGXNX-009);陕西省自然科学基础研究计划(2022JM-322);陕西省教育厅服务地方专项(22JC036)。

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    滑坡是一种常见的地质灾害,由于其突发性和破坏力,往往给人类的生命和财产安全造成严重的威胁,故建立精准的滑坡灾害实时监测预警系统至关重要。本文以STM32F103为核心控制器设计了滑坡监测预警系统,采集了降雨量、压力、位移、土壤含水率4种滑坡的主要影响因子,采用通用分组无线服务(General Packet Radio Service,GPRS)方式将数据传送至现场预警终端,判断是否超过设置的阈值,若超过立即报警,未超过则将数据传送至远程控制中心进行分析处理,控制中心将数据输入到蜣螂算法(Dung Beetle Optimizer,DBO)优化后的反向传播神经网络(Back propagation neural network ,BPNN)中进行当前滑坡发生概率预测,根据概率预测结果划分滑坡预警等级,实现滑坡实时监测与预警。通过支持向量机(support vector machines, SVM)、BP、遗传算法(Genetic Algorithm, GA)优化BP、麻雀搜索算法(Sparrow Search Algorithm, SSA)优化BP模型与 DBO-BP模型对比实验,得出DBO-BP预测精度更高,其拟合优度达98.8%,更接近真实值,并且相较于北斗、全球定位系统(Global Positioning System,GPS)等技术在滑坡预警时昂贵的成本,基于嵌入式的滑坡灾害监测预警系统降低了的成本,具有一定的工程应用价值。

    Abstract:

    Landslides are a common geological disaster, and due to their sudden and destructive power, often pose a serious threat to human life and property safety, so the establishment of an accurate landslide disaster real-time monitoring and early warning system is very important. In this paper, a landslide monitoring and early warning system are designed with STM32F103 as the core controller, and the main influencing factors of landslides are collected: rainfall, pressure, displacement, and soil moisture content, and the data is transmitted to the on-site early warning terminal by GPRS wireless communication to determine whether the set threshold is exceeded if it exceeds the immediate alarm, it will be transmitted to the remote control center for analysis and processing, and the control center will input the data into the dung beetle algorithm (Dung Beetle Optimizer, DBO) The optimized BP neural network predicts the probability of the current landslide, and divides the landslide warning level according to the probability prediction results, so as to realize real-time landslide monitoring and early warning. Through the comparison experiment between SVM, BP, GA-BP, SSA-BP models, and DBO-BP models, it is concluded that DBO-BP prediction accuracy is higher, and its goodness-of-fit is 98.8%, which is closer to the real value, and compared with the expensive cost of Beidou, GPS, and other technologies in landslide warning, the cost reduced by the embedded landslide disaster monitoring and early warning system has certain engineering application value.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-13
  • 最后修改日期:2023-05-17
  • 录用日期:2023-05-17
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变