融合特征增强与DeepSort的疲劳驾驶检测跟踪算法
DOI:
CSTR:
作者:
作者单位:

重庆交通大学机电与车辆工程学院

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Fatigue driving detection tracking algorithm incorporating feature enhancement and DeepSort
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高疲劳驾驶检测过程中面部特征识别的连续检测性和鲁棒性,降低车载终端的配置需求,设计了一种轻量化的人脸检测跟踪方法用于驾驶员疲劳检测。首先,采用MobileNetv3-Small作为面部特征提取主干轻量化网络模型,引入无参注意力模块(a simple, parameter-free attention module, SimAM)和深度超参数化卷积(depthwise over-parameterized convolutional, DOConv)构建特征映射和轻量化特征增强模块深度优化和关注人脸区域信息。然后融合DeepSort进行连续分类跟踪,优化面部遮挡对检测性能的影响。接着将人脸特征检测和关键点结合,根据单位时间内眼睛闭合时间百分比(percentage of eyelid closure over the pupil over time, PERCLOS)疲劳阈值、连续闭眼帧数和打哈欠总数判别疲劳驾驶。实验结果表明,模型的平均精度均值和查全率达到了98.9%和97.2%,提高了1.8%和6.3%;同时,浮点运算量仅为基准模型的28.3%,模型体积仅为7MB。最终得出疲劳识别率为95.6%,验证了该检测跟踪方法能够在疲劳驾驶检测中有效提取面部特征,达到了较高的检测准确率和鲁棒性,以及车载终端的轻量化部署需求。

    Abstract:

    To improve the continuous detection and robustness of facial feature recognition in fatigue driving detection processes and reduce the configuration requirements of in-vehicle terminals, a lightweight face detection and tracking method for driver fatigue detection was designed. First, MobileNetv3-Small was used as the lightweight network model for facial feature extraction, and parameter-free attention module (SimAM) and depthwise over-parameterized convolution (DOConv) were introduced to construct feature mapping and lightweight feature enhancement modules for deep optimization and focusing on facial region information. Next, DeepSort was integrated for continuous classification tracking, optimizing the impact of facial occlusion on detection performance. Then, facial feature detection and keypoints were combined to determine fatigue driving based on percentage of eyelid closure over the pupil over time (PERCLOS) fatigue threshold, continuous eye closure frames, and the total number of yawns. Experimental results showed that the average precision and recall rates reached 98.9% and 97.2%, improving by 1.8% and 6.3%, respectively. Meanwhile, the floating-point computation was only 28.3% of the baseline model, and the model size was only 7MB. The final fatigue recognition rate was 95.6%, verifying that the detection and tracking method can effectively extract facial features in fatigue driving detection, achieving high detection accuracy, robustness, and meeting the lightweight deployment requirements of in-vehicle terminals.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-05
  • 最后修改日期:2023-06-17
  • 录用日期:2023-06-19
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变