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UAYV target detection algorithm based on improved YOLOvVS8s

Qu Chenyang Lyu Jin Wei Ce
(School of Information Engineering, Chang'an University, Xi'an 710000, China)

Abstract: Aiming at the problem that the target size of the current UAV aerial images is small and the image background
is complex, which leads to low detection accuracy of existing UAV target detection algorithms, this article proposes an
improved YOLOv8s UAV target detection algorithm. First, deformable convolution is used to replace standard
convolution to enhance the network's feature extraction ability for irregularly shaped targets. Then the separable large-
kernel attention mechanism (LSKA) is used to improve the SPPF module to improve the problem of low detection
accuracy due to large differences in target scales. The weighted bi-directional feature pyramid network (Bi-FPN) is
combined at the neck of the network to achieve multi-scale feature fusion and improve the network’s missed detection and
false detection of small targets. At the head of the network, the dynamic detection head (DyHead) is used to replace the
original detection head to enhance the detection ability of occluded objects and small targets. Finally, in order to solve the
problem that a large number of low-quality samples in the dataset have a negative impact on the training process, the
Wise-10OU loss function was used to improve the model convergence speed and detection accuracy. Experimental results
show that the improved method achieved 41.7% mAP on the VisDrone2019 dataset. Compared with the original
YOLOvS8s algorithm, mAP@O0. 5 increased by 3. 0%, mAP@0.5 : 0. 95 increased by 1. 9% , the number of parameters
decreased by 17.5%, and the amount of calculation dropped by 12.63%. It achieves both model lightweight and
detection accuracy.
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Table 1 IoU loss comparison experiment
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Table 2 Ablation experiment
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Fig. 9 mAP@0.5 curve of ablation experiment YOLOvSs 38.7 11.1 28. 5
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