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基于改进YOLOv8s的无人机目标检测算法
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西安
 

710000)

摘 要:针对目前无人机航拍图像目标尺寸较小,图像背景复杂,导致现有的无人机目标检测算法检测精度较低的问题,提出

一种改进YOLOv8s的无人机目标检测算法。首先使用可变形卷积替换标准卷积,以增强网络对不规则形状目标的特征提取

能力;然后使用可分离大核注意力机制(LSKA)改进快速空间金字塔池化(SPPF)模块,改善因目标尺度差异较大导致检测精

度较低的问题。在网络颈部结合双向特征金字塔网络(Bi-FPN)实现多尺度特征融合,改善网络对小目标的漏检和错检问题。
在网络头部,使用自注意力机制动态检测头(DyHead)替换原检测头,增强对遮挡物体和小目标的检测能力。最后,针对数据

集中存在大量低质量样本对训练过程产生负面影响的问题,使用 Wise-IOU损失函数,提升模型收敛速度和检测精度。实验

结果表明,改进后的方法在VisDrone2019数据集上获得了41.7%的平均精度均值(mAP),与原YOLOv8s算法相比,mAP@
0.5提升了3.0%,mAP@0.5∶0.95提升了1.9%,参数量下降了17.5%,计算量下降了12.63%。实现了模型轻量化和检测

精度双重提升。
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Abstract:
  

Aiming
 

at
 

the
 

problem
 

that
 

the
 

target
 

size
 

of
 

the
 

current
 

UAV
 

aerial
 

images
 

is
 

small
 

and
 

the
 

image
 

background
 

is
 

complex,
 

which
 

leads
 

to
 

low
 

detection
 

accuracy
 

of
 

existing
 

UAV
 

target
 

detection
 

algorithms,
 

this
 

article
 

proposes
 

an
 

improved
 

YOLOv8s
 

UAV
 

target
 

detection
 

algorithm.
 

First,
 

deformable
 

convolution
 

is
 

used
 

to
 

replace
 

standard
 

convolution
 

to
 

enhance
 

the
 

network's
 

feature
 

extraction
 

ability
 

for
 

irregularly
 

shaped
 

targets.
 

Then
 

the
 

separable
 

large-
kernel

 

attention
 

mechanism
 

(LSKA)
 

is
 

used
 

to
 

improve
 

the
 

SPPF
 

module
 

to
 

improve
 

the
 

problem
 

of
 

low
 

detection
 

accuracy
 

due
 

to
 

large
 

differences
 

in
 

target
 

scales.
 

The
 

weighted
 

bi-directional
 

feature
 

pyramid
 

network
 

(Bi-FPN)
 

is
 

combined
 

at
 

the
 

neck
 

of
 

the
 

network
 

to
 

achieve
 

multi-scale
 

feature
 

fusion
 

and
 

improve
 

the
 

network's
 

missed
 

detection
 

and
 

false
 

detection
 

of
 

small
 

targets.
 

At
 

the
 

head
 

of
 

the
 

network,
 

the
 

dynamic
 

detection
 

head
 

(DyHead)
 

is
 

used
 

to
 

replace
 

the
 

original
 

detection
 

head
 

to
 

enhance
 

the
 

detection
 

ability
 

of
 

occluded
 

objects
 

and
 

small
 

targets.
 

Finally,
 

in
 

order
 

to
 

solve
 

the
 

problem
 

that
 

a
 

large
 

number
 

of
 

low-quality
 

samples
 

in
 

the
 

dataset
 

have
 

a
 

negative
 

impact
 

on
 

the
 

training
 

process,
 

the
 

Wise-IOU
 

loss
 

function
 

was
 

used
 

to
 

improve
 

the
 

model
 

convergence
 

speed
 

and
 

detection
 

accuracy.
 

Experimental
 

results
 

show
 

that
 

the
 

improved
 

method
 

achieved
 

41.7%
 

mAP
 

on
 

the
 

VisDrone2019
 

dataset.
 

Compared
 

with
 

the
 

original
 

YOLOv8s
 

algorithm,
 

mAP@0.5
 

increased
 

by
 

3.0%,
 

mAP@0.5∶0.95
 

increased
 

by
 

1.9%,
 

the
 

number
 

of
 

parameters
 

decreased
 

by
 

17.5%,
 

and
 

the
 

amount
 

of
 

calculation
 

dropped
 

by
 

12.63%.
 

It
 

achieves
 

both
 

model
 

lightweight
 

and
 

detection
 

accuracy.
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0 引 言

随着无人机技术的蓬勃发展以及制造成本的降低,无
人机开始从军用领域进入日常生活,给人们的日常生活和

工作提供了巨大的便利。无人机凭借其体型小巧、动作灵

活性高、易于操控等特点,现已在各种多元化航拍场景中

都得到了应用。无人机航拍目标检测算法的研究对于实

现智能化、高效化的无人机航拍具有重要意义。
无人机由于其特殊复杂的作业场景,基于无人机的目

标检测会面临诸多难点。首先,无人机航拍图像背景复

杂,容易有目标遮挡。无人机高空飞行视野广阔,目标检

测干扰物较多,使得在复杂背景下对航拍图像中的目标进

行准确定位和分类成为难题[1]。其次,无人机航拍的高度

较高,视野较广,使得图像中的待检测对象大多为小目标,
相比于中大型目标,小目标的尺寸小,分辨率低,导致在图

像中的信息有限,在下采样过程中容易丢失关键特征,需
要对算法进行改进,以提升在小目标检测方面的性能。另

外,无人机由于轻量化设计,所能搭载的计算资源有限,且
无人机目标检测对于实时性有一定要求,因此减少网络参

数量和降低计算复杂程度是十分有必要的。
目前基于深度学习的目标检测主要分为两类。一种

是基于区域推荐的目标检测算法,也称两阶段(two-stage)
目标检测算法。这类检测算法首先使用一种区域生成方

法生成可能包含目标的候选区域,对于每个候选区域,提
取特征并进行分类和边界框回归,以确定是否存在目标以

及目标的位置和类别。最后通过后处理步骤来消除重叠

的检测结果,得到最终的目标检测结果。常见的两阶段目

标检测算法包括区域卷积神经网络(region-based
 

convo-
lutional

 

neural
 

network,R-CNN)[2]、Fast
 

R-CNN[3]、Fas-
ter

 

R-CNN[4]等。另一种是基于回归的目标检测算法,也
称为单阶段(one-stage)目标检测算法。此类算法一般先

将整个图像输入网络,通过卷积和其他操作提取特征。然

后在特征图上直接进行分类和边界框回归,以确定图像中

的目标位置和类别。最后通过阈值筛选和非极大值抑制

等后处理步骤,得到最终的目标检测结果。常见的单阶段

目标检测算法包括YOLO[5]、SSD[6]、RetinaNet[7]等。
伴随着无人机目标检测对于实时性和效率的要求不

断提高,目前无人机目标检测算法主要以单阶段的目标检

测算法为主。杨辉羽等[8]将改进后的单聚合模块嵌入

YOLOv5网络中,解决因为网络深度造成的梯度衰减问

题。裴伟等[9]在SSD的基础上进行改进,通过使用空洞卷

积和反卷积扩大感受野,融合了不同层的特征信息,增强

了模型的泛化性能。闫钧华等[10]使用深度卷积和跨层级

通道特征融合,添加位置注意力机制,有效提升了遥感图

像中弱小目标的检测精度。Yang等[11]针对无人机电力

线巡检中绝缘子缺陷检测准确率低的问题,提出了改进的

YOLOv3[12]网络。他们使用双向融合网络来提高对小目

标的检测精度。同时引入了EIOU损失函数[13],使预测

框更接近真实框。钱承山等[14]基于 Transformer改进

YOLOv5模型,提出了一种应用于无人机设备的轻量山

火检测网络YOLO_MC与YOLO_MCLite.,他们使用分

组计算和通道注意力机制,结合知识蒸馏算法显著降低了

网络的计算复杂度。陈朋磊等[15]设计出一种高效的小目

标特征聚合网络(SFANet),使其能够充分整合浅层特征

图中小 目 标 的 细 节 信 息。Hou等[16]提 出 了 一 种 名 为

YOLOX-Pro的无人机航拍影像山体滑坡检测方法,基于

YOLOX[17]进行改进,以提高在不同地貌环境下的检测精

度。该方法采用Focal
 

Loss损失函数[18]来应对大小样本

分布不均的问题,使用位置注意力机制(CA)提高模型的

检测精度和特定区域的识别能力,提升了无人机航拍影像

中山体滑坡检测的准确性和鲁棒性。
为了进一步提高小目标检测的精度,同时优化网络结

构,实现网络的轻量化。本文在YOLOv8s网络基础上进

行如下。

1)针对无人机拍摄目标大多形状不规则,导致标准卷

积对其特征提取能力较弱的问题,使用可变形卷积代替标

准卷积,使用多路坐标注意力机制改善可变形卷积的学习

能力,增强网络对于复杂目标的特征提取能力。

2)针对待检测目标尺度差异较大,导致检测精度低的

问题,使用可分离大核注意力机制(large
 

separable
 

kernel
 

attention,LSKA)改进快速空间金字塔池化(spatial
 

pyra-
mid

 

pooling-fast,SPPF)模块,提高网络的多尺度特征提

取能力。

3)由于小目标特征会随着网络层数加深而丢失,本文

结合双向特征金字塔网络(bi-directional
 

feature
 

pyramid
 

network,Bi-FPN)的思想,优化原网络的特征融合模块,
设计一个新的特征融合模块YOLOv8-Bi增强网络对不同

尺度目标的检测能力,同时降低计算复杂度。

4)针对小目标和遮挡物体容易漏检或误检的问题,本
文使用一个更加高效的自注意力机制动态检测头(dy-
namic

 

head,DyHead)提高网络检测性能。

5)针对数据集中的低质量样本会对训练效果产生负

面影响的问题,使用 Wise-IOU损失函数替换原来的损失

函数,提升训练速度和精度。

1 YOLOv8网络结构

YOLOv8是目前最先进的目标检测算法之一,它在

速度和准确度之间取得了良好的平衡,能够快速而准确地

识别目标,适合部署于移动设备。最新版本的 YOLOv8
具 有 多 个 规 格 大 小 的 模 型,如 YOLOv8n、YOLOv8s、

YOLOv8m、YOLOv8l和YOLOv8x。其总体结构包括主

干网络(Backbone)、颈部网络(Neck)和检测头(Head)3部

分。网络结构如图1所示。
主干网络采用了Darknet53结构,其中包括卷积(con-

volution,Conv)、SPPF和 C2f(CSPLayer
 

with
 

2Conv)模
块。Conv模块用于提取和整理特征图,SPPF模块实现了
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图1 YOLOv8s网络结构

Fig.1 YOLOv8s
 

network
 

structure

空间金字塔池化,用来融合不同尺度的特征,而C2f模块

融合了C3模块的残差结构和 YOLOv7[19]的泛化高效层

聚合网络(efficient
 

layer
 

aggregation
 

network,ELAN)思
想,使其能够提供更丰富的梯度流信息。颈部网络使用特

征金字塔网络(feature
 

pyramid
 

network,FPN)和路径聚

合网络(path
 

aggregation
 

network,PAN)实现了多个尺度

特征图的融合,进一步增强了语义表达和定位能力。检测

头部分采用了 YOLOX的解耦头结构,将分类和检测分

离,同时采用了无锚框(anchor-free)的目标检测方法,提
高了检测速度和准确度。在损失计算方面,YOLOv8采用

了正负样本动态分配策略,结合了分类损失(varifocal
 

loss,VFL)和回归损失CIOU+分布焦点损失(distribu-
tion

 

focal
 

loss,DFL),以提高模型的性能。

2 本文方法

2.1 主干网络改进

1)C2f_DcnA模块

在无人机航拍图像目标检测场景中,待检测的目标

往往没有规则的几何形状,且由于无人机是在运动中拍

摄图像,拍摄视角的改变导致相同的目标也会具有不同

的表现形状。标准的卷积操作往往使用固定的矩形卷积

核,使得标准卷积在此任务下无法更好的提取到待检测

物的特征,从而导致漏检错检。因此,本文使用可变形卷

积网络(deformable
 

convolutional
 

networks
 

version
 

2,DC-
Nv2)[20]代替标准卷积,增强网络对于复杂目标的特征提

取能力。可变形卷积不再使用规则的矩形卷积核,而是

在每一个采样位置上增加一个偏移量(offset),以求在不

同的阶段和目标上都使用最优的卷积核结构,增强不规

则目标的特征提取。同时在每个采样点添加一个权重,
增强网络的形变建模能力。可变形卷积核的示意图如图

2所示。

图2 可变形卷积核

Fig.2 Deformable
 

convolution
 

kernel

可变形卷积核计算公式如下:

y(P0)=∑
Pn∈R

w(Pn)·x(P0+Pn +ΔPn)·Δmn

(1)
式中:y 为输出特征图;n为采样点数,w(pn)为第n 个采

样点投影权重,pn 为预定义卷积网格采样的第n 个位置;
可变形卷积操作在R 上进行,每个点增加了一个可学习

的偏移量Δpn。Δmn 是第n 个位置的调制标量,取值为

[0,1],若Δmn 取值为0,则表示此部分区域的特征对网络

输出无关。
在DCNv2中,偏移量和权重是由一个简单的卷积的

学习获得,提取各路特征的能力相对较弱。因此,本文设

计一个多路坐标注意力机制(multipath
 

coordinate
 

atten-
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tion,MPCA)添加在该卷积中,增强对于输入图像特征的

学习,生成更契合待检测物体形状的卷积核,增强原网络

的特征提取能力,MPCA的结构如图3所示。MPCA将

输入特征分解为两个一维的注意力特征编码:水平方向

(x)和垂直方向(y),分别进行平均池化(average
 

pooling,

AP)操作,然后连接起来进行通道信息交换,通过一组卷

积和sigmoid操作使特征信息更加精细,重新切分后再融

合得到坐标注意力(coordinate
 

attention,CA);在输入特

征处添加一个通道分支,对其使用全局平均池化操作

(global
 

average
 

pooling,GAP)和卷积操作,并将sigmoid
操作后的特征求平均后与之融合,调整原通道的权重,最
后得到多路坐标注意力机制。

图3 MPCA结构

Fig.3 Multipath
 

coordinate
 

attention
 

structure

  2)SPPF_LKSA模块

无人机目标检测场景中,由于无人机飞行高度变化,
待检测目标的尺寸差异较大,图像中的同一物体往往会呈

现不同的尺寸。原有的SPPF模块使用3个连续的池化

层,将每层的输出结合起来,实现多尺度融合,显著降低了

计算复杂度。但SPPF模块的多层池化操作使其容易忽

略小目标的特征信息,在无人机目标检测任务上的效果不

佳。因此,本文引入LSKA注意力机制改进SPPF模块,
提高网络的多尺度特征提取能力。

LSKA使用深度卷积(DW-Conv)和空洞深度卷积

(DW-D-Conv)来建模大卷积核,使其能够增强空间感知

能力并减少大卷积核带来的计算量和参数量。对于一个

k×k的大卷积核,LSKA将其分解为3部分:1)
 

一个1×
(2d-1)

 

和一个(2d-1)×1的深度卷积,d 为膨胀系数

的大小;2)
 

一个1×(k/d)和一个(k/d)×1的空洞深度

卷积;3)
 

一个1×1卷积。LKSA结构如图4所示。
特征图输入后,LSKA使用深度卷积对输入的每个通

道都执行单独的卷积操作,每个卷积核处理来自一个输入

通道的信息;然后使用空洞卷积在输入通道之间共享参

数,从而减少参数量;最后使用一个1×1卷积整合信息,
形成最终的特征图。LSKA的输入如下:

ZC =∑
H,W

WC
(2d-1)×1* ∑

H,W
WC

1×(2d-1)*FC  (2)

ZC =∑
H,W

WC
k
d ×1
* ∑

H,W
WC

1×
k
d
*ZC  (3)

AC =W1×1*ZC (4)

FC =AC 􀱋FC (5)
其中,*和􀱋分别代表卷积和 Hadamard积。

2.2 多尺度特征融合
由于无人机飞行高度较高,拍摄图像中的物体多数为

图4 LSKA结构

Fig.4 Large
 

separable
 

kernel
 

attention
 

structure

小目标,其特征信息主要存在于浅层网络,随着网络层数

的加深,小目标的特征信息会丢失,导致小目标的检测精

度下降。在YOLOv8网络中,为了提升对小目标的检测

能力,添加了新的模型输出层P2,P2层的卷积次数少,特
征图尺寸较大,使其能够保留更多的小目标特征。为了进

一步提升网络的检测性能,本文结合Bi-FPN的思想,优
化原网络的特征融合模块,增加不同尺度之间的连接通

道,使得特征信息能够跨层级流动,增强网络对不同尺度

目标的检测能力。

3种特 征 融 合 结 构 如 图 5所 示,其 中 图 5(a)为
YOLOv8中的特征融合方式,虽然添加了小目标检测层

P2,但并没有直接连接到输出层,而是输入到P3层中再
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输出,在特征提取过程中,小目标的特征容易受到较大目

标的干扰,网络层数加深也意味着小目标特征信息的缺

失,这使得原网络在小目标检测上不能满足实际要求。

Bi-FPN在同一层的输入节点和输出节点之间跳跃连接,
如图5(b)所示,在尺度相同的情况下,跳跃连接能够更好

地提取和传递特征信息。因此,本文在浅层网络P2和P3
中添加跳跃连接,使其保留更多的浅层特征,同时针对无

人机平台有限的计算资源,优化网络结构,减少网络参数

量和 计 算 量,改 进 后 的 特 征 融 合 结 构 YOLOv8-Bi如

图5(c)所示。

图5 3种特征融合模块结构

Fig.5 Three
 

feature
 

fusion
 

module
 

structures

2.3 自注意力机制动态检测头

YOLOv8网络使用了3个检测头,采用了 Anchor-
Free和Decoupled-Head的思想,在多数目标检测任务中

表现出色,但在检测遮挡物体和小目标时容易漏检或误

检,导致在无人机目标检测任务上效果不佳。因此,本文

使用一个更加高效的动态检测头DyHead提高网络检测

性能。

YOLOv8主干网络输出的是一个三维张量,level×
spatial×channels,分别为特征层数,空间位置和输出通

道,在这3个维度上分别使用尺度感知注意力L,空间感

知注意力S 和任务感知注意力C,3种注意力结合组成了

动态检测头DyHead,结构如图6所示。

1)尺度感知注意力根据语义重要性融合不同尺度的

特征,其表达式如下:

πL(F)·F =σf
1
SC∑S,CF    ·F

σ(x)=max0,min1,
x+1
2    (6)

式中:f(·)是一个1×1卷积的线性变换;σ 为 Hardsig-
moid函数。

2)空间感知注意力首先使用可变形卷积在注意力学

习中添加稀疏性,然后在同一空间位置聚合不同层次的特

征,其表达式如下:

πS(F)·F=
1
L∑

L

l=1
∑
K

k=1
wl,k·F(l;pk+Δpk;c)·Δmk

(7)
式中:K 为稀疏采样位置的个数;Δpk 和Δmk 为可变形卷

积中的偏移量和偏移权重,两者都由中间层f 的输入特

征学习得到。

3)任务感知注意力通过动态地打开或关闭特征通道,
以支持不同的任务。

图6 DyHead结构

Fig.6 Dynamic
 

head
 

structures

πC(F)·F=max(α1(F)·Fc+β1(F),α2(F)·Fc+

β2(F)) (8)
式中:Fc 为第c个通道的特征切片,[α1,

 

α2,
 

β1,
 

β2]T=θ
为学习控制激活阈值的超函数。θ首先在L×S 维上进行

全局平均池化以降低维数,然后使用两个完全连接层和一

个归一化层,最后使用移位的sigmoid函数将输出归一化

为[-1,1]。
上述3种注意机制是顺序应用的,通过多次嵌套
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式(7),可以有效地将多个πL、πS 和πC 块叠加在一起,组
成动态检测头DYHead。

2.4 损失函数改进
在目标检测算法中,通常使用边界框(bounding

 

box)
实现精确的目标定位,采用IoU损失函数来衡量网络预测

结果与实际结果的相似度,进一步优化边界框的定位。

YOLOv8s算法的损失函数由分类损失
 

VFL
 

Loss和回归

损失CIOU
 

Loss
 

+
 

DFL两部分组成。相比于IOU函数,

CIOU损失函数将预测边界框和真实边界框的重叠面积,
中心点距离,以及边界框的纵横比纳入损失计算中,提高

了边界框的检测能力和收敛速度。但当预测边界框和真

实边界框的纵横比相同时,CIOU 会忽略该边界框的优

化,使模型收敛过程产生波动。同时,训练数据中不可避

免会存在低质量的样本,尤其是在充斥着密集小目标的无

人机拍摄图像中,使用CIOU函数计算低质量样本的中心

距离和纵横比等几何因素会加重模型对低质量样本的惩

罚,从而导致模型的泛化能力下降,影响检测性能[21]。因

此,本文引入 Wise-IOU损失函数,提升边界框预测回归

效果。

Wise-IOU采用动态非单调的聚焦机制,该机制使用

离群度代替IOU对锚框进行质量评估提供了明智的梯度

增益分配策略。该策略在降低高质量锚框的竞争力的同

时,也减小了低质量示例产生的有害梯度。这使得 Wise-
IOU可以聚焦于普通质量的锚框,并提高检测器的整体

性能。公式定义如下:

LWIoUv1 =RWIoULIoU

RWIoU =exp
(x-xgt)2+(y-ygt)2

(W2
g +H2

g)*  (9)

式中:(x,
 

y)和(xgt,
 

ygt)为锚框和目标框的中心点坐标,

LIoU 属于[0,
 

1),能够改进质量较低的锚框,通过在距离

度量中引入RWIoU 属于[1,
 

e),可以减少对高质量锚框和

中心距离的关注,(Wg
2+Hg

2)*将Wg 和Hg 分开处理,
可以防止RWIoU 产生阻碍收敛的梯度,有效消除了阻碍收

敛的因素,因此该方法没有将纵横比纳入损失计算中。通

过引入一个单调聚焦系数
 

L*
IoU,能够使得模型聚焦于困难

样本,同时引入均值LIoU 作为归一化因子,得到了 Wise-
IOUv2,公式如下:

LWIoUv2 =
L*

IoU

LIoU  
r

LWIoUv1 (10)

2.5 改进的YOLOv8s网络模型
通过以上对原始YOLOv8s模型的改进,得到最终的

无人机目标检测网络模型,网络结构如图7所示。

图7 改进的YOLOv8s网络结构

Fig.7 Improved
 

YOLOv8s
 

network
 

structure

3 实验结果与分析

3.1 实验数据集
本文实验数据集采用无人机目标检测数据集 Vis-

Drone2019,该数据集由6
 

471张训练图片,548张验证图

片和1
 

610张测试图片组成,包括了pedestrian、people、bi-

cycle、car、van、truck、tricycle、awning-tricycle、bus、motor
共10个类别,几乎包含了城市场景下无人机航拍图像中

的全部常见目标种类。实验数据集的部分图片如图8所

示,从图8(a)可以看出图像中待检测目标容易受到楼房,
树木等遮挡;图8(b)为由于无人机飞行倾角的变化也会

改变图像拍摄的角度,这些因素都给准确检测目标带来了
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图8 VisDrone2019数据集

Fig.8 VisDrone2019
 

dataset

挑战。

3.2 实验环境
本文实验硬件环境为 Nvidia

 

RTX3080ti
 

GPU,Xeon
(R)

 

Silver
 

4214R
 

CPU;软件环境为Python
 

3.8.10,Cuda
 

11.8,pytorch
 

2.0.0。
训练时输入图像大小为640,初始学习率为0.01,使

用SGD优化器,动量值为0.937,在RTX3080ti
 

GPU上训

练200轮,最后10轮关闭 Mosaic数据增强。

3.3 评价指标
本文使用准确率(precision,P)、召回率(recall,R)、平

均精确度均值(mean
 

average
 

precision,mAP)衡量目标检

测算法的准确性。

P =
TP

TP+FP

R =
TP

TP+FN

(11)

式中:TP(true
 

positive)表示实际为正类且预测也为正

类;TN(true
 

negative)表示实际为负类且预测也为负类;

FP(false
 

positive)表示实际为负类但预测为正类;FN
(false

 

negative)表示实际为正类但预测为负类;P 表示正

确预测的正类个数占总预测正类个数的比例;R 表示正确

预测的正类个数占总预测个数的比例。
本文使用mAP@0.5和 mAP@0.5∶0.95衡量算法

的准确度。mAP@0.5表示IOU阈值为0.5时目标类别

的评价检测精度,能够反映网络对于不同类别目标的综合

分类能力;mAP@0.5∶0.95表示以步长为0.05,IoU阈

值从0.5~0.95的全部10个阈值下的平均检测精度。
(mean

 

average,AP)平均精度为:

AP =∫
1

0
P(R)dR

mAP =
1
n∑

n

i=1
APi

(12)

式中:n表示数据集的类别数。
除了衡量算法的准确性以外,本文使用参数量(pa-

rameters)和计算量(FLOPs)来衡量网络的计算复杂程

度,衡量算法的轻量化程度。

3.4 损失函数对比实验
为了验证本文所改进的损失函数的有效性和不同版

本的 Wise-IoU损失函数的性能差异,以 YOLOv8s为基

准模型进行实验,使用CIoU、DIoU[22]、MPDIoU[23]和两个

版本的 Wise-IoU损失函数进行对比实验,实验结果如表

1所示。从表1可以得出,本文使用的 Wise-IoU损失函

数比其他损失函数的精度更高,实验结果表明,Wise-
IoUv2版本比v1版本的平均精确度高出0.6%,更适合无

人机小目标检测任务。

表1 损失函数对比实验

Table
 

1 IoU
 

loss
 

comparison
 

experiment

损失函数 P/% R/% mAP@0.5/%
CIoU 48.4 38.7 38.7
DIoU 48.7 38.2 38.7
MPDIoU 50.9 38.0 38.8
Wise-IoUv1 49.5 39.1 39.0
Wise-IoUv2 51.1 38.5 39.6

3.5 消融实验
为了验证本文所提出的无人机小目标检测算法各个

改进模块的有效性,设计进行消融实验。实验 A 使用

YOLOv8s算法作为基准模型;实验B在实验A基础上将

原有的C2f模块改进为C2f_DcnA;实验C将实验B算法

模型中的SPPF模块替换为本文的SPPF_LKSA;实验D
在实验C的基础上使用YOLOv8_Bi改进其特征融合模

块;实验E在实验D的基础上将损失函数替换为 Wise-
IoUv2;最后,实验F将实验E算法模型的检测头替换为

DyHead。实验结果如表2所示。
本文将原始YOLOv8s算法作为基准模型,在此基础上

逐个添加改进模块进行消融实验。从实验结果可以看出,在
网络主干部分,C2f_DcnA和SPPF_LKSA改进模块增强了

网络的特征提取能力,mAP@0.5和 mAP@0.5∶0.95均

提升了0.4%,但由于添加了注意力机制,网络计算复杂

度略有上升。在此基础上,添加多尺度特征融合模块

YOLOv8-Bi后,增 强 了 算 法 对 不 同 尺 度 目 标 的 特 征
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    表2 消融实验

Table
 

2 Ablation
 

experiment

实验 模型 mAP@0.5/% mAP@0.5∶0.95/% 参数量/(×106) 计算量/GFLOPs
A YOLOv8s 38.7 23.0 11.12 28.5
B A+C2f_DcnA 39.0 23.3 11.31 26.7
C B+SPPF_LKSA 39.1 23.4 12.38 27.6
D C+YOLOv8_Bi 40.2 24.3 8.63 24.3
E D+Wise-IoUv2 40.6 24.3 8.63 24.3
F E+DyHead 41.7 24.9 9.17 24.9

图9 消融实验的 mAP@0.5曲线

Fig.9 mAP@0.5
 

curve
 

of
 

ablation
 

experiment

提取,改善了模型对小目标的检测能力,同时由于弱化了

大目标检测层,使模型的参数量和计算量大幅降低,实现

了模型的轻量化。实验E使用 Wise-IoUv2损失函数改善

数据集中低质量样本过多影响训练效果的问题,加快模型

收敛速度,进一步提升检测精度。最后添加了自注意力机

制动态检测头DyHead,虽然参数量和计算量小幅上升,
但增 强 了 模 型 对 小 目 标,遮 挡 目 标 的 检 测 能 力,

mAP@0.5和 mAP@0.5∶0.95相较之前分别提升了

1.1%和0.6%。消融实验中各模型在训练中的 mAP@
0.5曲线变化如图9所示,可知,模型在150轮后趋于收

敛,改进后模型的检测精度明显低于改进前的检测精度。
综上所 述,本 文 改 进 后 的 模 型 相 比 于 基 准 模 型

YOLOv8s在mAP@0.5和 mAP@0.5∶0.95上分别提

升了3.0%和1.9%,参数量和计算量分别下降了17.5%
和12.63%,由此可以看出本文改进的模型检测精度显著

提升,模型计算复杂程度显著降低,实现模型的轻量化。

3.6 对比实验
为了验证本文提出的无人机小目标检测算法的性能

优势,选取目前热门的目标检测算法在 VisDrone2019数

据集上进行对比实验,其中包括两阶段目标检测算法如

Faster-RCNN、FPN[24],以及单阶段目标检测算法如SS
 

D、RetinaNet和YOLO系列算法,实验结果如表3所示。
从实验结果可以得出,单阶段的 YOLO系列目标检

测算法在检测精度上显著高于SSD、RetinaNet和两阶段

    表3 对比实验

Table
 

3 Comparison
 

experiment

模型 mAP@0.5/%
参数量

/(×106)
计算量

/GFLOPs

Faster-RCNN 33.3 41.2 206.7

FPN 29.2 11.3 26.7

SSD 23.8 24.5 87.9

RetinaNet 21.2 19.8 93.7

YOLOv5s 33.3 7.2 16.5

YOLOX-s 33.9 9.0 26.8

YOLOv7 41.8 36.9 104.7

YOLOv8s 38.7 11.1 28.5
本文 41.7 9.2 24.9

目标检测算法FPN,Faster-RCNN在检测精度上虽然不

输YOLO系列,但参数量和计算量较大,因此不适合在无

人机平台使用。在YOLO系列算法中,本文方法相比于

YOLOv7算法,平均精确度只下降了0.1%,但参数量下

降了75%,计 算 量 下 降 了 76%,说 明 本 文 方 法 相 比

YOLOv7更适合在无人机平台上部署。相比于计算复杂

度较低的YOLOv5s和YOLOX-s算法,本文方法的检测

精度分别提升了8.7%和7.9%,说明本文方法在无人机

小目标检测任务的检测精度更好,同时具有相对较小的参

数量和计算量。

4 结 论

本文针对当前无人机目标检测算法存在小目标检测

精度不足,实时性差等问题,对 YOLOv8s算法为基础进

行改进。通过使用可变形卷积替换原来的标准卷积增强

网络对形状不规则目标的特征提取能力,使网络提取到更

加丰富的目标特征信息。无人机拍摄图像中目标尺度差

异较大,本文使用可分离大核注意力机制LSKA提高网

络的多尺度特征提取能力,使网络能够获得不同层次的尺

度信息。然后针对无人机拍摄图像中小目标数量较多,将

Bi-FPN和 YOLOv8s的特征融合模块结合起来,添加小

目标特征融合路线,增强网络对不同尺度特征层的信息进

行融合的能力,提升小目标的检测精度。在检测头部分,
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使用基于自注意力机制的动态检测头DyHead改善网络

对小目标的漏检、错检问题,进一步提升检测精度。针对

数据集中的低质量样本会对训练效果产生负面影响的问

题,使用 Wise-IoU损失函数替换原来的损失函数,提升训

练速度和精度。实验结果表明,在检测精度方面,本文方

法相比原始 YOLOv8s算法,mAP@0.5提升了3.0%,

mAP@0.5∶0.95提升了1.9%;在计算复杂度方面,参数

量下降了17.5%,计算量下降了12.63%。相比于其他热

门目标检测算法均有一定优势。
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