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Abstract: Aiming at the ground-based synthetic aperture radar (SAR) deformation measurement, the conventional
permanent scatterer (PS) selection method is difficult to meet the deformation measurement requirements in terms of the
quantity and quality of PS selection in the time-incoherent and complex scenarios. The article proposes a PS selection
method based on bi-directional long short-term memory-convolutional neural network (BiLSTM-CNN), which uses
amplitude dispersion and amplitude to jointly select positive and negative samples to construct the training dataset, and
takes the interfering phase, amplitude divergence and correlation coefficient as the temporal features of the dataset, and
then learns the PS global temporal features and the PS local temporal features by using the BILSTM and the multi-scale
CNN, respectively,and then the global and local temporal features are weighted and fused to learn by the multi-head self-
attention (MHSA), and finally feature probability mapping is carried out in order to construct the PS classification
model. The performance of the proposed selection method is experimentally analyzed by using the radar monitoring data
of Jiudaoquan in Wanzhou District, Chongqing Municipality, and the results show that the method improves the network
accuracy,F, score. recall, precision, and other indexes. and improves the quantity and quality of radar image PS
selection.

Keywords: ground-based synthetic aperture radar; permanent scatterer; bi-directional long short-term memory; convo-

lutional neural network; multi-head self-attention

g 5 H 8 :2024-03-19
CEETREEKE AR F IR (2021 YFB3901400) (T BT B Z BHFH R T H (KJQN202101215) ¥t Bl

— 24 — [EHABRTMELAR Hh BB O T



0 3

b A i FL 42 B ik (ground-based synthetic aperture
radar, GB-SAR) ", HUB A8 {5 &, 35 2058 i 22 4 T 3 W it 4L
ARIRI, A6 25 53 T 950 5 B 8 4 2 FEICIR] — 07 B AN [ i
Z W 37 5 W gk K LA B B9 GB-SAR Bl %, 8k 5 it 4T T3
Jib FEAT B 5 AR A T U A A S BB AR S,
HiEE SAR R A3 5 V7 21K BT 1R R, R T X 28 1
T AL AT I AR R 4 B R 2%, itk PS s
GB-SAR 4 Ji T2 25 T 5t 1) DG B,

H AT GB-SAR & JTJ s J3 55 25 LR ¢ 2 3055 Jr i 1
KA K (permanent scatterer, PS), iF & B85 24 12 1% HL
PS I, & Yo i 5 B b A BT T BE R AE 22 R Y
(A EE AR o SR T Ao B R 0 A7 O . K T R
WLl 25 3 A0 T 3% 5 v RR A, (H X AE B 0 S S IR AH T 3%
L, L PS B /0 B2 5] A L1525 5 150 1 o Mk LA
RELE TR . A REE R USRI R A o
WEMHILE O F A E O NS EE BT EIZ BT %
FRHC I LIAHC REEITHNZ A B s Ak, %07 B4 A
B AR SR AR BT B A OC 2R 8, A OC R BV 32 ) R
Wi, 23 1% B PS Uk LRk .

WE & P25 O 25 A 1 SRTE T AR B L BR ARSI 45 4588 &
JEFNGE AR, 3 0 4 W 4% 1 PS 3% U vk B 32 i 45 )
WEFE N R T32 L, 2020 4R, Tiwari 42 1 T 3
T A7) 3B B 28 M 4% (convolutional neural network for
interferometric semantic segmentation, CNN-ISS) F1 -+ #
18 B ER K EWHC 12 M 4 (convolutional long short
term memory network for interferometric semantic seg-
mentation, CLSTM-ISS) . E 153 5l i3k 2 > PS 25 8] Fl i+
23R S AR WYIZ O B LR AL B A S PS B
AT EEYE . 2021 4F, 8 BEAEBE XN 20 56 1 R A
BRI NG 25 A X8R PS B A7 78 22 5 PS5 ), $2 40 T
— P EE TR PSS 2Ok S IA M4
4% (recurrent neural network, RNN) AH b A 55 %5 p |
SRy ), [0 L LSTM %5 2070 BT iy v %8 . 2022 4,
Zhang %5 T — i O0E 18 — 2 5 B 2 W 4% 19 A T
IR 7 i v R T A B T S 500 A B R A AR AR i N
TV B AE T . A R 0 IR T 9 52 56 3% BH BT 45 O v 3
HAAE T S B TR AR A R R &, OF BfE AT R R B
.,

ERMZETE PS M HGE R AR BT B I PS AR
ik 4 JRy Bt e A Sy RN o AT PS B R L AR SC AR
T — ol T X R A2 — 5 B 22 0 2% (BILSTM-
CNND Y PS BB v, A SC 7 R PS 7E 6 8] ¥ 51 |
R E R 1 SE A PS P RRIESR L AR5 R A BILSTM
Xt PS 42 Jay i R AR, OF R 2 RUBE CNN 78 4327 )
A PS 5 &8 B 7 47 AF, TRl 8 2 3k A = 1 HL
(multi-head self-attention, MHSA) Xt 4 J& Fl &) 3 fir 45 At

il

Hh B O T

g 9 D&

PR AEHEAT AL 7 o, Jo o 6 R AIE RS 3 PS MR
2o S KA AT U R A 3R E T AR ST B A

1 EF BiLSTM-CNN HYJ 7k A 8 5 1% BX 77 3%

1.1 JIEENER

D IE AR EL

HiEE SAR EI&H,PS 54E PS $i H ) 2 30 E 35
FprE, AR PSHUEE £ T PS Bk, 35 B8 R F AR A B die
YRR 45, W 4 £ BUE PS 4326 04k PS UG . Ik,
T4 D5 5 1 ST A AR A — AR E A B B R R R
B A5 PR A IR B B 22 T T BR SR (A 1T BRZE A FAR &
rho B BT (PS) AV B i 1R R s CIE POYER IEHEA S
A,

2) HRAT AL 2

PS J& 75K i 8] 9 [ P9 A4 45 v A T vk A (5 R R I
07 BE AUAR A AR B F AR PS SRR . O (I 45 5 42k )
PS B FPARRAE 42 85 PS 432 0 M AR SO R R
JE 28 T WA A A R EUE R PS #R-1E .

1 F SR 220 AA i ST 2R A (O 57—
ZIMRIE A — 1) 2.

M =AW —AG—1D (D

A0 COFTAT AA B/ B2 5 38 0 13 A8 Ak )N
DU s ] S BB P O BRSPS IR AR E R

TV HH 2 K T R 3 G v X R AR F A AL B A
Fe A A G EARIT .

M=M, M, =AA,e = A (2)
oo RO E R A @ ARG R SR E A
fifd,

T PS W A0 A7 28 B0 AH X A B4 A o7 W 7 RN AR
1k, R BL s s o A PS 3 M, BT DL Bl ) 45 T 47 2% 2
PS f5tk

B P AF DG ZR BRI T B 1 90 v O ) e 22045 3 A
A Tia) F9 A 6 o PRI T ) A 408 5 s T 4% i) 178 4 G 2R BB
R PS HHE, AT R R s a0

iCp1—¢y)

N o’ ‘
Wy Wy
Ly xL,
|2 (M) | 2
20w e 20 Jwi™|
IWXLZ L‘><l_2

APy, WML R w™ RRH M RERLL 2
DM GRESEEE; « #Rgdtyn, D) [11FEwD

WITH A B2 M | | R B,
1.2 MZEZEH

DBILSTM

LSTM J& RNN ) —Fh seaff #5822 it T RNN
r R R T 2k 5 R AR R IR) L, BB Ah B I ) A 8 IR) A, 45
M 1 R,

EAARFMEHEAR — 25 —



Big 5 B &

@D
A 0,
[o]
h., h,
xl
1 LSTM pas 4
Fig. 1 Internal structure of LSTM

(Dt iAW T .

fi=0cW,x, +W, h, , +b,) 4
A, W, W, GRS T YT A 2, ¢ — 1 B2
TR by WAL b, TR TR B o AR 3R B0 oR 4L

sigmoid,
AT R T .
i, =oW,x, +Wyh, ., +b,) (5
¢, = tanh(W, o, +W, h,, +0,) (6)
c, = f,Oc+1,Oc, D

KA. ¢ Y AT 2R SR GEE ; o, ARG 1R
5 W W, 3SR A TN 2, oh o FIRLE s b, FEIA
[ B W, W, REEEIR SR 0, 2 WE; O0F

[ZEV Y
Ot AR F .
o, =cW,x, +W,,h,, +0b,) €))
h, = 0, ®tanh(c,) 9

A W, W, FIR BT 4 BN S A o, FE— B 2]
FAROIRZS b, BB s o, FCRE T DR

BiLSTM M2 A8 LSTM &4t G4k fr 45, & &8
T o diy ALK HE AT R RS AR 844 4 e K
B8 22 1) £ 401 DT 346 o P 45 mT s R T & A
2 i,

hilI h’*' h:’ h' hzhwl hm

| R AR REE

Jaila] LSTM | LSTM | LSTM |
e /| j”(:

il | LsT™ | | LsT™

Kl 2 BILSTM 5y
Fig. 2 BILSTM structure

B2, X AR e IR S Y, A3 e I 20 i ity
HH Y Ay o IR 20 R 1] A5 2 A BORZ DE R (ELA, R
By ke IR 1] ¢ B 20 B2 R/

2)CNN

A5 BBl 22 0 4% 38 o X Ay AR BEAT 2 R A B b AL R

— 26 — [EABRTMELAR

2024F 7 H

$435 F7H  meeeeem

P R B B2 3 A B B S5 M R AR L O FLBEE CNN 2
B R0, BT B0 A REAE S0 A 4, B N A BRI R B IR
N AR AR,

CNN & AR BRE G2 2%, . 582
B R KRN .

! :f<21i71><k€f+/71f) 10
iem

Ao M, BB APVRRAE ( REBHE L Z W% 2 BB
s b M EIME; () BTG R, 75 )5, CNN #
H R FE IE 26 M B I (rectified linear unit, RelLU) 45 3 7%
PR HE AT O Ab B, B U B SRR B BT

LR A R i A B Tl R | 9 N G N P e e Y
B InH L0 st £k $ 4 2 d K ik (Max Pooling) #1335
ik (Average Pooling) ,

3 A A

RIS PS FRAE AR, A SCHR X PS 4 Ry R R #
B P 43 ) A 2 3] AR [ G 3 s . R AL g
FALEE 3 AN, BILSTM-CNN B4 I 48 B e A 10 il &
MBS, £F X PS B PR 1 e it BiILSTM-
CNN Bt A W LR PS 4 J5) I 3 1S 360 I 2 465 4iF 208 47
R 5] SR A BILSTM X4 R F #4725, % A
22 R /N RS e 9 AH AT IR 56 28 L R )T Pl AR 1 i 4 A
X B A 4 Je 0 Jey S B 4 A E AT A 2 2D L B P a3 26
)2 308 Ao RE AR B S A5 B [F) 28 00 A R AT e A 2R

A
B BIiLSTM LR
Tl Convld k=2 _—
ReLU
[ Max Pooling |
E A .
E‘ > Convld k=3 .§7.§ .§ _é _§4’U3Q 2
ReLU 8 & (3 g Eg: = & - o0y
| Max Pooling | g
1 Convld k=4
— ReLU L LES
| Max Pooling | =

BiLSTM-CNN4E SR B
Kl 3 BiLSTM-CNN %14y
Fig. 3 BiLSTM-CNN architecture

(1D BILSTM-CNN Bt 4 [ 4% 4

BiLSTM-CNN 4 % 4% 4 He 6147 BiLSTM H1 CNN,
BiLSTM figxf PS B} J¥ #E47 H J5 [ 2% > X Fh 5 X RE T 47
HuHE A PS FRAE I () 7 51 b A 5 2 34, ST X 4 Js i
FPRAM B2 R BILSTM & 2 2
LSTM, B985 s 40k 16.

ARHTEEFEET 1D CNNU SR AT B s i, DA 4 s 3
X PS JR il AR AT R 5 2k T . 7R AR AR R
AT B 7 R AIE HE A7 24 B A8 38 DA 3 0 — 2 3 BUR 28 I 4% 1Y
HAGER, AT L A B AL AR Ak PS AR . T A
AR Z0 0 T V6 AR AL A 56 R B e B 25 o B A T

Hh BB O T



e 5438 £ 7 H

2024 7 B

1M PO 4% 3% 0 575 A 1 o JR T N O 56 R AT AR ), N
FEATRIE P R R AR T B KN G518 2.3.4
19 3 Fh— e R Bl 48 W 4% L i ) 25Kl 1, Max Poo-
ling AR KA 0 R/NEEN 2.

(2) FRAE il A 5

ZH EE A Concat., Flatten f12 3k A 3 & 1L
57, B4 B Concat %I BILSTM ¥ 4k 19 4 =y B 7% #1
CNN $#2IU Z2 RUEE Jm) 3 B PP A A E AT DF 2, SE & )R 5
JRFREE R AL A ARG SISk AR I ALE 2 ) 4 R A
JRIFB I R 4 AE B ALTE 4 A, o H: EE B R AE 8 AT A Ak
U I R E G B R g R m T i — 2 i
W R IKBE J1, B 5 ) Flatten 4 AAL 2 5 3] (4 45 10F i
S — SRR AL {45 e & AT AT e T b R A

TEL 3k AERE A, A Q) Vi (KO FIHE (V) #)
K HFE AT B e RN AER .
—AEE PR TRQD RITE T E AN EE Sk
AR mX A piR, FlgRADK AN LW EZ S
TP RARZLER . K2R N HAMKES
i A AE A e A5 3] LB AR AE 9 A A 1

oK’
Attention(Q ,K,V) = softmax (7) \% an
Vd
head; = Attention QW ,KWF , VW) (12>
MultiHead (Q .K.,V) = Concat Chead , »*** shead , )W’
(13
A, A T, softmax R EEREL WP €
k
RdmmleIXJq wE € RdmadeIXdk = Rdmode]Xd-u we € R"’lvx"mndel

FIWE BRI o d o A S BN S
TR RFAE BEAT PR ERAE

(3) 3 F i

AR e 4% 32 )2 ({ully connected, FC) \RelLU JZ 0
Sigmoid JEM AL, HoHr, FC )2 52 3wy 4 5 1E 2) 28 51 %
MBS, Sigmoid BB K 4 7 45 J2 i il 7 Ak O TE 8 T
A, AR I S R A I 2R — A O R 2

1 4E )% ; Concat 3

g 9 D&

SRR 2 P PERE L AR R A R LA B Ze Bl dE e, Hop
FC JZ K15 4k 128,

2 XBRER

S SAEAR SO BRI PS B R0ME AR IR S8 ) Sk
TP T 7 N DX 35 A% 1 38 2 S T 9 I R L 3 45 1 — Ak it
YK 2 170 m A ) T8 B 20 300 m, SEEG 47 5 0
B4 i, 4 w0, 5ok A R i R w7 o6
FRtE R RRE M A M T 5B LR, ST T H &b 2
AL st TR 2E TR R R & R E LR R S T3 A
LRSI 5 R, %R 18 TAEFE Ku B B, I 4 )
f£ 3~10 min, 1 km AL AYZE [ 53 HEFEH 0.3 mX 4.0 m,

Kl 4 %EA%}?

Fig. 4 Experimental scenario diagram

~

K5 HEES ALk

Fig.5 Ground-based synthetic aperture radar

SN SR B Al FH A2 2021 4E 5 H 7 B 14:41~
16:09 B BEFTIRELAY 30 M5 75 3K B AR, % I Bt i {8 F 35 1%
B 6 () i . MR & 2021 455 H 7 H 16:12~
17240 JIT 3R HUAY 5 15 R L 1% 5T B R {5 35 B A2 An 181 6 (b)
Fin . ST YIRE I W 45 DIl 250 T 8 5 0 iR 5 R [m)

dB dB
1100 g %) 1100 ¢ 2)
1000 10 1000 -10
900 20 900 I 20
g 800 £ 800
i 30 {-30
zZ 700 = 700 ‘
600 0 600 F 40
500 5 -50 500 8 =50
400 60 400 = 60
20 10 0 10 20 30 20 -10 0 10 20 30
FiF/(°) FLF/(°)
(a) PIZHHE (b) BRA
(a) Training data (b) Test data
Bl 6 i R
Fig. 6 Amplitude imaging map
CRNEER SR 2 Rl ESh B FIERE AR — 27 —



Big 5 B &

FLIEAZEE AE o T YN 25 A0 000 3 7 T 50 40 1) s eF 1] 4 Ao
FHEATRE B A AL

3 XBERSHM

3.1 WG SHEE

BN A 7+ 3 BRI I G fn s iE 45 . 4%
SHNT AR K/ANH 64,2 3% 0.000 1,12 IEN{EH
0. 001, b #84 Adam . IR N 39, T IILEREA
FRORAS 28 BB R 2 R R B S L R 2L
1P S 6 30 o 5 8 UK R AR R R i 2 ) AR R IR I R
2. W% PSFIAE PS #H Z (1] LB , HAXEE 43 5 & 4 8
1.
3.2 MEMREER

1) o 265 1 BE PEA 45 A

ARSI 25 9 45 45 % PS FRAE 2% > A, 3 i M 3 A9 PS
Ay ARV T R R IR R 0 PS 28 X GRS 5]
B9 A AL X A A B8 U AR N Y &5 S 5 s
Frbr s Z I8 IR VEFE MR, R R 1 FiR .

x1 REBEE

Table 1 Confusion matrix
T 1 451 o0 1 41
_ FIE A T A5
52 B GE 1] . -
(true positive, TP) (false negative, FN)
_ i 1F 5] 17 5
52 5 2 ) g 3

(false positive, FP) (true negative, TN)

HEHG R (accuracy) 7R BT A IEH BUNEEA & BUREAS 4L
B LA

Accuracy = (TP +TN)/(TP +FN +FP +TN)

a4

FE 1% (precision) B 1E A T00I0 1F 651 % b7 150900 1F 451 &
B .

Precision = TP /(TP + FP) (15

A4 (recall) BIVIE #ff 35000 1F 41 £ b7 S BR IE 41 & 4K
il -

Recall = TP/(TP 4+ FN) (16)

Fy 0P 8(F D N

Precision « recall

an

F, =2

" Precision + recall

Hi F Precision A1 Recall B A~ $5 47 i % J& 41 B 7 J&
PR AR ] I 2 5 =3 o F°y 0 B0 RS A 58 A0 A [0 g 3 A
B, EIRAET —Fh LR & 2 I W AN 98 45 1 J7 5 Ui T
MZ AP E. —BMH F, RN 2825 A M.

2) B IE AR Y 56 HiE 45

15 0 R B 1 B — 40 B MW BR R 4 M, ek
289 504 MEBEAEAS , TR A5 LA o i A B 0 EE R 25 ]
B 0. 25 FIIEAE T TBR — 35 dB 98 B R 2 I 25 B 7 IEREAS , 3

— 28 — [EHABRTMEHLA

20245 7 B
H435 £ 8

1% 15 886 /> PS, i i) % # R BE 25 22 0. 32 FEE TR
—35 dB H & B {H 5 ik s B AR AR, 3 123 115 4~4E PS,
HIE RN GREARSEIR 7 ¢ 3 R I G e FRIE 4R . I i1
PEA IR 22 5% LT 05 A0 7 FUAH 56 2 BOSE I3 R AE A hy I 4%
I . I UEA SO HE T 0k A A B | o AS [R) ) 2% A5 AR
15T SR8 U ZR i B ARk 1 PS, E B X8 ik
U UESE A S5 45 AN IR AR PS /3245 Bk AT 40 0r . WhiiF4E
H &5 RN 2.3 s,
F2 BNEBEXWIEEERST

Table 2 Analysis of the overall validation set metrics
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Table 3  Analysis of PS class metrics by model (%)
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Fig. 10 Probability statistics plots of PS phase standard deviation selected by different methods
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Table 5 Phase standard deviation statistics of PS selected

by different methods
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