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摘 要:针对地基合成孔径雷达(SAR)形变测量中,常规永久散射体(PS)选取方法在时间欠相干复杂场景下,PS选取数量、
质量难以满足形变测量需求的问题。提出了一种基于双向长短期记忆-卷积神经网络(BiLSTM-CNN)的PS选取方法,该方

法采用幅度离差与幅度联合选取正、负样本构建训练数据集,并把干涉相位、幅度差分与相关系数作为数据集的时序特征,然
后利用BiLSTM和多尺度CNN分别学习PS全局时序特征及局部时序特征,再通过多头自注意力机制(MHSA)对全局和局

部时序特征进行加权融合学习,最后进行特征概率映射以构建PS分类模型。利用重庆市万州区九道拐雷达监测数据对所提

方法性能进行实验分析,结果表明该方法改善了网络准确度、F1 分数、召回率、精确度等指标,提高了雷达图像PS选取数量

及质量。
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Abstract:
  

Aiming
 

at
 

the
 

ground-based
 

synthetic
 

aperture
 

radar
 

(SAR)
 

deformation
 

measurement,
 

the
 

conventional
 

permanent
 

scatterer
 

(PS)
 

selection
 

method
 

is
 

difficult
 

to
 

meet
 

the
 

deformation
 

measurement
 

requirements
 

in
 

terms
 

of
 

the
 

quantity
 

and
 

quality
 

of
 

PS
 

selection
 

in
 

the
 

time-incoherent
 

and
 

complex
 

scenarios.
 

The
 

article
 

proposes
 

a
 

PS
 

selection
 

method
 

based
 

on
 

bi-directional
 

long
 

short-term
 

memory-convolutional
 

neural
 

network
 

(BiLSTM-CNN),
 

which
 

uses
 

amplitude
 

dispersion
 

and
 

amplitude
 

to
 

jointly
 

select
 

positive
 

and
 

negative
 

samples
 

to
 

construct
 

the
 

training
 

dataset,
 

and
 

takes
 

the
 

interfering
 

phase,
 

amplitude
 

divergence
 

and
 

correlation
 

coefficient
 

as
 

the
 

temporal
 

features
 

of
 

the
 

dataset,
 

and
 

then
 

learns
 

the
 

PS
 

global
 

temporal
 

features
 

and
 

the
 

PS
 

local
 

temporal
 

features
 

by
 

using
 

the
 

BiLSTM
 

and
 

the
 

multi-scale
 

CNN,
 

respectively,and
 

then
 

the
 

global
 

and
 

local
 

temporal
 

features
 

are
 

weighted
 

and
 

fused
 

to
 

learn
 

by
 

the
 

multi-head
 

self-
attention

 

(MHSA),
 

and
 

finally
 

feature
 

probability
 

mapping
 

is
 

carried
 

out
 

in
 

order
 

to
 

construct
 

the
 

PS
 

classification
 

model.The
 

performance
 

of
 

the
 

proposed
 

selection
 

method
 

is
 

experimentally
 

analyzed
 

by
 

using
 

the
 

radar
 

monitoring
 

data
 

of
 

Jiudaoquan
 

in
 

Wanzhou
 

District,
 

Chongqing
 

Municipality,
 

and
 

the
 

results
 

show
 

that
 

the
 

method
 

improves
 

the
 

network
 

accuracy,F1
 score,

 

recall,
 

precision,
 

and
 

other
 

indexes,
 

and
 

improves
 

the
 

quantity
 

and
 

quality
 

of
 

radar
 

image
 

PS
 

selection.
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0 引 言

地基合成孔径雷达(ground-based
 

synthetic
 

aperture
 

radar,GB-SAR)[1],其形变信息主要通过差分干涉测量技

术获取。在差分干涉测量时首先是获取同一位置、不同时

刻观测场景两张及以上的 GB-SAR图像,然后进行干涉

处理得到干涉相位,基于干涉相位实现形变反演[2]。通常

地基SAR图像中包含许多低质量像素点,利用这些点的

干涉相位进行形变反演会出现较大误差。因此PS选取是

GB-SAR高精度形变测量的关键[3]。
目前GB-SAR常用幅度离差、相关系数等方法选取

永久散射体(permanent
 

scatterer,PS)。幅度离差法选取

PS时,首先计算图像中每个像元幅度标准差与幅度均值

的比值,然后通过设置阈值进行筛选[4]。该方法对城镇、
矿山等高相干场景性能较好,但对植被边坡等低相干场

景,选取PS数量较少且会引入相位误差较高的点,难以满

足续后续形变反演。相关系数法是以当前像素点为中心

设置矩形窗口,利用窗口内点的复信息计算该像元的相关

系数,并以相关系数值评判该点质量高低。该方法使用周

围点复信息计算相关系数,相关系数大小受周围点的影

响,会造成PS漏选、误选[5]。
随着神经网络在自然语言处理、目标检测等领域的发

展和突出效果,基于神经网络的PS选取方法也逐渐得到

研究人员的广泛关注。2020年,Tiwari
 

等[6]提出了干涉

语义分割卷积神经网络(convolutional
 

neural
 

network
 

for
 

interferometric
 

semantic
 

segmentation,CNN-ISS)和干涉

语义分割卷积长短期记忆网络
 

(convolutional
 

long
 

short
 

term
 

memory
 

network
 

for
 

interferometric
 

semantic
 

seg-
mentation,CLSTM-ISS),它们分别用来学习PS空间和时

空特性,实验表明该方法比常规方法具有更好的PS密度

和可靠性。2021年,曹琨等[7]针对人为经验阈值调整繁

琐和图像中各个区域PS阈值存在差异性等问题,提出了

一种基于注意力机制的PS选择方法,该方法与递归神经

网络(recurrent
 

neural
 

network,RNN)相比具有更短的训

练时间,同时比LSTM等网络有更高的准确率。2022年,

Zhang等[8]提出了一种双通道一维卷积神经网络的相干

点选取方法,方法中的两个通道分别处理雷达图像振幅和

干涉图的相干性。对农村和城市的实验表明所提方法选

出的相干点具有更好的数量和质量,并且在时间上具有

优势。
上述网络在PS选取过程中,都没有考虑PS时序特

征中的全局时序和局部时序。针对PS时序特征,本文提

出了一种基于双向长短期记忆-卷积神经网络(BiLSTM-
CNN)的PS选取方法。本文方法利用

 

PS在时间序列上

的稳定特性,首先构建PS时序特征集,然后采用BiLSTM
对

 

PS全局时序特性建模,并利用多尺度CNN充分学习

和捕捉PS局 部 时 序 特 征,再 通 过 多 头 自 注 意 力 机 制

(multi-head
 

self-attention,MHSA)对全局和局部所有时

序特征进行加权学习,最后将特征映射到PS类的概率。
通过实测数据进行训练和测试,验证了本文方法的有

效性。

1 基于BiLSTM-CNN的永久散射体选取方法

1.1 训练集的准备

1)正负样本获取

地基SAR图像中,PS与非PS数量比例呈现非均衡

特性,非PS数量远多于PS数量。若直接采用样本数据

训练网络,网络会出现将PS分类为非PS的情况。因此,
所提方法首先利用像素点归一化幅值剔除图像中不稳定

的点,再联合使用幅度离差门限与幅值门限在余下像素点

中选取高质量(PS)和低质量像素点(非PS)作为正样本与

负样本。

2)特征构建

PS是在长时间范围内保持高相干性的像素点[9],其
幅度和相位相比于非PS更加稳定。为使网络更好学习

PS时序特征,提高PS分类准确性,本文方法将像素点幅

度差值、干涉相位和相关系数作为PS特征。
像素点幅度差值ΔA 为当前时刻幅度A(t)与前一时

刻幅度A(t-1)的差值。

ΔA =A(t)-A(t-1) (1)
由式(1)可知,ΔA 值越小反映像素点幅度变化越小,

则时间范围内幅度越稳定,符合PS幅度稳定特性。
干涉相位是将两幅雷达图像中对应像素点复共轭相

乘取相位[10],计算公式如下:

M =M1·M *
2 =A1A2e

j(φ1-φ2)=Aej(Δφ) (2)
式中:“*”表示取共轭复数;A 和φ 表示像素点幅度和相

位值。
由于PS干涉相位表现出相对较低的相位噪声和变

化,因此通过分析PS干涉相位,可以帮助网络更好学习

PS特性。
时序相关系数体现了时间序列中不同时刻像素点相

位间的相关性,因此可利用相邻雷达图像间的相关系数作

为PS特征,可采用下式得到[11]:

γk =
∑

L1×L2

w(1)
k ·w(M)*

k

∑
L1×L2

|w(1)
k |2·∑

L1×L2

|w(M)
k |2

(3)

式中:γk 为相关系数值;w(M)
k 表示第M 幅图像以k 为中

心的所有像素点复信息;*表示复共轭;∑
L1×L2

[]代表窗口

内所有复信息之和;||表示取模。

1.2 网络架构

1)BiLSTM
LSTM是RNN的一种改进模型[12],其缓解了RNN

中梯度消失与梯度爆炸问题,能处理长时间依赖问题,结
构如图1所示。

—52—



     国外电子测量技术 中国科技核心期刊

图1 LSTM内部结构

Fig.1 Internal
 

structure
 

of
 

LSTM

(1)遗忘门计算式如下:

ft =σ(Wifxt+Whfht-1+bf) (4)
式中:Wif、Whf 分别是遗忘门对当前输入xt、t-1时刻隐

藏状态ht-1 的权重;bf 为遗忘门偏置;σ 代表激活函数

sigmoid。
(2)输入门计算式如下:

it =σ(Wiixt+Whiht-1+bi) (5)

ct
~ =tanh(Wicxt+Whcht-1+bc) (6)

ct =ft☉ct-1+it☉ct
~ (7)

式中:ct
~ 为当前时刻状态候选值;ct 代表细胞更新后的状

态;Wii、Whi 分别代表输入门对xt、ht-1 的权重;bi 为输入

门偏置;Wic、Whc 代表候选状态的权重;bc 是偏置;☉代表

哈达玛积。
(3)输出门计算式如下:

ot =σ(Wioxt+Whoht-1+bo) (8)

ht =ot☉tanh(ct) (9)
式中:Wio、Who 表示遗忘门分别对当前输入xt和上一时刻

隐藏状态ht-1 的权重;bo 代表输出门的偏置。

BiLSTM网络是在LSTM 基础上优化所得,它是通

过对输入数据进行前向和后向建模[13],充分捕捉时序数

据之间的依赖性,从而增加网络可用信息量[14],结构如

图2所示。

图2 BiLSTM结构

Fig.2 BiLSTM
 

structure

图2中,Xt 代表t时刻的输入,Yt 代表t时刻的输出,
其输出为t时刻前向和后向得到的隐藏层拼接值[ht,hb

t],
ht、hb

t 为前向和后向t时刻隐藏层大小。
2)CNN
卷积神经网络通过对输入数据进行逐层卷积、池化操

作,深入提取蕴涵在数据中的结构特征,并且随着CNN层

数累加,所得到的特征更加抽象,最终从输入数据中提取

更加鲁棒的特征[15]。

CNN包含输入层、卷积层、激活层、池化层等,卷积层

数学模型可表示为:

xl
j =f ∑

i∈Mj

xl-1
i ×kl

ij +bl
j (10)

式中:Mj 代表输入的特征;l代表第l层网络;k代表卷积

核;b网络的偏置;f(·)是激活函数。在卷积后,CNN通

常采用修正线性单元(rectified
 

linear
 

unit,ReLU)等激活

函数进行激活处理,主要是实现网络非线性特性的引入。
池化层用于减少特征的空间维度,同时保留重要信

息。最常见的池化操作是最大池化(Max
 

Pooling)和平均

池化(Average
 

Pooling)。

3)本文模型

为充分对PS特征建模,本文提出对PS全局和局部

时序分别建模学习,模型框图如图3所示。模型结构中主

要包括3个模块,BiLSTM-CNN联合网络模块、特征融合

模块和分类模块。针对PS时序特性,首先通过BiLSTM-
CNN联合网络模块对PS全局时序和局部时序特征进行

建模学习,其中采用BiLSTM 对全局时序进行学习,采用

多尺度小卷积模块捕捉相邻时序关系,然后由特征融合模

块对所有全局和局部时序特征进行加权学习,最后由分类

层通过特征映射得到不同类别的概率进行最终分类。

图3 BiLSTM-CNN架构

Fig.3 BiLSTM-CNN
 

architecture

(1)BiLSTM-CNN联合网络模块

BiLSTM-CNN联合网络模块包含BiLSTM和CNN。

BiLSTM能对PS时序进行前后向学习,这种方式能更好

地理解PS特征时间序列中的模式和趋势,实现对全局时

序关系的建模学习。本文方法中BiLSTM 共包含2层

LSTM,隐藏节点数为16。
本文方法基于1D

 

CNN[16]进行重新设计,以更好实现

对PS局部时序特征进行增强学习。在数据输入时,将输

入的时序特征进行维度变换以适应一维卷积神经网络的

输入结构。对于地基合成孔径雷达PS特征而言,由于相

邻时刻的干涉相位、相关系数、幅度差分具有高相干性,因
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此网络结构需较好的对局部时序关系进行建模学习。为

充分提取时序关系,本文搭建了卷积核大小分别为2、3、4
的3种一维卷积神经网络,其中时间步长为1,Max

 

Poo-
ling时间步长和窗口大小设置为2。

(2)特征融合模块

该模块主要包括Concat、Flatten和多头自注意力机

制
 [17]。首先用 Concat对 BiLSTM 捕 获 的 全 局 时 序 和

CNN提取的多尺度局部时序特征进行拼接,实现全局与

局部时序的组合,然后引入多头自注意力机制学习全局和

局部时序特征的权重分布,对其重要特征进行加权处

理[18],并减少不重要信息对后续分类的干扰,进一步提高

模型表达能力,最后利用Flatten将加权学习到的特征展

平成一维特征,使得最终输出可以更全面地表示数据。
在多头自注意力计算中,查询(Q)、键(K)和值(V)都

来自同一个输入序列,因此,它被称为“自注意力”。在每

一个注意力头中进行式(11)的计算,其中每个注意力头i
具体计算如式(12)所示,并通过式(13)将多个头的注意力

进行拼接得到多头注意力。将多头注意力得到的权重与

输入值相乘得到最终输入特征的加权输出。

Attention(Q,K,V)=softmax
QKT

dk  V (11)

headi=Attention(QWQ
i,KWK

i,VWV
i) (12)

MultiHead(Q,K,V)=Concat(head1,…,headh)Wo

(13)

式中: 1
dk

是缩放因子,softmax 为激活函数,WQ
i ∈

R
dmodel×dq,WK

i ∈R
dmodel×dk,WV

i ∈R
dmodel×dv,WO ∈R

hdv×dmodel

为映射参数矩阵,dmodel是输入参数的特征维度;Concat表

示对特征进行拼接操作。

图6 幅度成像

Fig.6 Amplitude
 

imaging
 

map

(3)分类模块

该模块由全连接层(fully
 

connected,FC)、ReLU层和

Sigmoid层构成。其中,FC层实现高维特征到类别数量

的映射,Sigmoid函数是将全连接层输出转化为正类别概

率。本文将通过堆叠两层全连接层和一个激活函数层增

加模型非线性性能,以提高模型拟合复杂数据性能,其中

FC层隐藏节点数为128。

2 实验信息

为验证本文方法选取PS的有效性,本次实验场景选择

重庆市万州区钟鼓楼街道李家河沟北东侧九道拐的一处边

坡,该边坡纵向长约170
 

m、横向宽度约300
 

m,实验场景如

图4所示。由图4可见,边坡上有大量的植被覆盖和散射

特性较为稳定的公路、房子与裸露山体。实验所用雷达是

由北京理工大学雷科公司研发的直线扫描式地基干涉合成

孔径雷达,如图5所示。该雷达工作在Ku波段,测量周期

在3~10
 

min,1
 

km
 

处的空间分辨率为0.3
 

m×4.0
 

m。

图4 实验场景

Fig.4 Experimental
 

scenario
 

diagram

图5 地基合成孔径雷达

Fig.5 Ground-based
 

synthetic
 

aperture
 

radar

实验训练数据使用的是2021年5月7日14:41~
16:09时段所获取的30幅雷达图像,该时段幅值平均成

像如图6(a)所示。测试数据是2021年5月7日16:12~
17:40所获取的雷达图像,该时段幅值平均成像如图6(b)
所示。对于训练后的网络,训练所用数据与测试数据不同
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且无交集,但由于训练和测试所用数据间隔时间较短,使
得它们特征具有相似性。

3 实验结果与分析

3.1 实验训练参数设置
将训练数据按7∶3比例划分训练集和验证集。网络

参数如下:批量大小为64,学习率为0.000
 

1,L2正则化为

0.001,优化器为Adam,训练轮次为39。由于训练集样本

中两个类别数目相差较大,将导致训练出现明显误差,因
此实验通过二元交叉熵损失中添加类别权重降低训练误

差。根据PS和非PS数目之间比例,其权重分别设置为8
和1。

3.2 网络性能结果

1)网络性能评估指标

本文训练网络将对PS特征学习建模,通过构建的PS
分类模型实现雷达图像像素点PS分类,这与深度学习中

的二分类相似。对于二分类模型,验证集预测的结果与实

际标签之间形成混淆矩阵,关系如表1所示。

表1 混淆矩阵

Table
 

1 Confusion
 

matrix

预测正例 预测负例

实际正例
真正例

 

(true
 

positive,TP)
假负例

(false
 

negative,
 

FN)

实际负例
假正例

(false
 

positive,FP)
真负例

(true
 

negative,TN)

准确率(accuracy)表示所有正确预测样本占总样本数

的比例:

Accuracy = (TP+TN)/(TP+FN +FP+TN)
(14)

精确率(precision)即正确预测正例数占预测正例总

数比例:

Precision=TP/(TP+FP) (15)
召回率(recall)即正确预测正例数占实际正例总数

比例:

Recall=TP/(TP+FN) (16)

F1 分数(F1)为:

F1 =2·
Precision·recall
Precision+recall

(17)

由于Precision和 Recall两个指标通常是相互矛盾

的,很难同时提高二者。F1 分数是精确率和召回率的调和

值,它提供了一种综合考虑这两个指标的方法,以平衡它

们之间的矛盾。一般使用F1 来评价分类器的综合性能。

2)验证集的验证结果

将幅度阈值设置为-40
 

dB删除部分噪点,共选出

289
 

504个候选样本。在候选样本中通过设置幅度离差门

限0.25和幅值门限-35
 

dB选取网络训练所需正样本,共

得15
 

886个PS。通过设置幅度离差0.32和幅值门限

-35
 

dB用反阈值方法选取负样本,共123
 

115个非PS。
将正负训练样本按照7∶3划分训练集和验证集,并计算

样本幅度差分、干涉相位和相关系数等时序特征作为网络

输入。为验证本文所提方法的有效性,对不同网络模型进

行了实验分析,因为训练的目的是选出PS,主要是对整体

验证集分类结果和验证集PS分类结果进行分析。验证集

的结果如表2、3所示。

表2 各个模型整体验证集指标分析

Table
 

2 Analysis
 

of
 

the
 

overall
 

validation
 

set
 

metrics
 

for
 

each
 

model (%)

模型 准确率 精确率 召回率 F1 分数

LSTM 99.32 94.80 96.93 95.84
TransformerEncoder 99.04 92.32 96.42 94.27

CNN 99.54 97.04 97.30 97.17
BiLSTM 99.29 94.31 97.25 95.73

BiLSTM-CNN 99.68 97.53 98.50 98.01

表3 各个模型验证集PS类指标分析

Table
 

3 Analysis
 

of
 

PS
 

class
 

metrics
 

by
 

model (%)

模型 准确率 精确率 召回率 F1 分数

LSTM 94.30 89.85 94.32 90.03
TransformerEncoder 93.57 84.92 93.57 89.04

CNN 94.84 94.84 95.68 95.26
BiLSTM 95.02 88.85 95.02 91.83

BiLSTM-CNN 97.22 95.18 97.22 96.19

由表2可知,BiLSTM-CNN网络整体验证集的分类

性能更好,各项指标达到97.5%以上,准确率最高达到了

99.68%,精确率、召回率和F1 分数指标相比其他网络也

有所提高。为能够进一步得出模型对PS特征的识别能

力,PS类的各项指标进行分析。由表3可知,BiLSTM-
CNN网络训练后在PS类上准确率最高达到97.22%,说
明该网络训练模型在整个验证集上PS的分类更加准确。
召回率最高达到了97.22%,表明该网络对PS特征学习

更好,能将绝大部分标签的PS选出,反映出设计模型成功

地捕获了大部分真正的正类别样本,表明该模型在发现和

检测PS类方面具有很好的全面性与敏感性。BiLSTM-
CNN精确率最高达到了95.18%,表明模型很少犯错地将

负类别样本错误地预测为正类别,即将非PS识别为PS
的概率更低。F1 高通常表明模型在精确度和召回率之间

达到更好的平衡,高F1 得分意味着模型更精准的找到真

正PS,并且在区分PS与非PS具有更高的准确性,同时也

表明了该模型在错误分类正类别和漏报正类别之间具有

较好的全面性。

3.3 实测数据结果

1)常规方法

对测试集30幅雷达图像采用0.25的幅度离差门限,

—82—



中国科技核心期刊 国外电子测量技术      

只能选取17
 

324个PS,PS数量较少。实验场景幅度离差 图和幅度离差所选PS幅度离差值图如图7(a)和(b)所示。

图7 幅度离差图

Fig.7 Amplitude
 

dispersion
 

map

  测 试 集 采 用 0.925 的 相 关 系 数 门 限 共 选 取

20
 

470个PS,其实验场景和相关系数法所选PS点的

时序平均相干系数如图8(a)、(b)所示。从图8(b)可

见,虽然相关系数的点数较之 幅 度 离 差 的 点 数 更 多,
但是它选取的 PS成块状分布,很容易误 选 一 些 低 质

量的点。

图8 相关系数图

Fig.8 Correlation
 

coefficient
 

map

图9 BiLSTM-CNN选取的PS
Fig.9 PS

 

selected
 

by
 

BiLSTM-CNN

  2)BiLSTM-CNN网络

为了减少测试时间并与训练集保持一致,通过幅值门

限-40
 

dB剔除部分噪点,共剩下291
 

842个候选PS,并

获取它们的差分幅度、干涉相位、相关系数输入训练好的

网络进行PS的选取。通过网络一共选出23
 

581个PS,所
选PS的幅度离差图和时序平均相干系数如图9(a)和(b)
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所示。图9(a)比图7(b)
 

PS的密度较幅度离差法选取

的有所增加,图9(b)比 图8(b)块 状 更 少。从 图9可

得,选取的PS大部分幅度离差值较低,且相关系数值

较大。

3)实测数据对比分析

对于实测雷达图像数据,由于PS的数量和质量将影

响后续解缠以及形变测量的精度[19],因此本文将通过所

选PS的数量和质量来评价幅度离差法、相干系数法、BiL-
STM、CNN和BiLSTM-CNN方法性能。表4为这5种方

法所选PS的数量。

表4 PS选取数量统计

Table
 

4 PS
 

selection
 

number
 

statistics

方法 PS数量

幅度离差 17
 

324
相关系数 20

 

470

BiLSTM 29
 

053

CNN 22
 

296

BiLSTM-CNN 23
 

581

从表4可知,对于实测数据的30幅雷达图像采用

0.25幅度离差门限选出17
 

324个PS,采用0.925相干系

数门限选出20
 

470个 PS,
 

采用 BilSTM-CNN 共选出

23
 

581个PS,采用本文方法分别比幅度离差法和相关系

数法PS的数量提高了36.12%、15.19%。从表4可得出

BiLSTM的数量最高,但其实这些PS中存在一些非PS
被识别为PS的情况,因此为了能更清楚PS选取的性能,
进行下一步分析。

为了分析PS的质量,首先分别基于5种方法所选

的PS采用最小费用流算法对这30幅雷达图像两两生

成的干涉相相位图进行相位解缠,然后再利用二阶斜

距模型进行大气相位补偿,最后得到29幅补偿后时序

相位图。由于在监测的这30
 

min的场景并未发生形

变,在进行大气相位补偿后,每一个PS的干涉相位中

主要是噪声相位分量。因此,可以采用补偿后的时序

相位的标准差来衡量PS相位的稳定性[20]。图10(a)、
(b)分别是5种方法的补偿后相位标准差的概率密度

和概率分布。从图10可看出,5种选取方法不同标准

差区间PS占 比 出 现 明 显 差 异。幅 度 离 差 法、相 关 系

数、BiLSTM、CNN、BiLSTM-CNN
 

5种 方 法 选 出 的 PS
相位标准差小于0.6

 

rad
 

的
 

PS
 

占比分别为95.19%、
 

87.95%、
 

79.22%、79.21%、97.60%。当雷达系统工

作在
 

Ku
 

波段(12~18
 

GHz)时,0.6
 

rad
 

的相位标准差

对应的形变测量精度约为
 

0.796~1.194
 

mm,因此采

用BiLSTM-CNN网络进行PS选取时,在保证
 

PS相位

质量条件下能选择出更多的PS。

图10 不同方法所选PS相位标准差的概率统计

Fig.10 Probability
 

statistics
 

plots
 

of
 

PS
 

phase
 

standard
 

deviation
 

selected
 

by
 

different
 

methods

  表5为5种方法所选PS相位标准差区间统计数据。
从表5可知,在PS相位标准差取小于0.25

 

rad时,幅度离

差、相关系数、BiLSTM、CNN和BiLSTM-CNN选取PS
数量分别为

 

4
 

875、4
 

843、4
 

697、4
 

395和5
 

065,占比分别

为28.14%、23.66%、16.17、19.71、21.48%。BiLSTM选

出的PS数目较CNN多,但是占比很低,这是因为BiL-
STM的PS类的精确率较低,网络将一些非PS误选为PS
的原因。另外,CNN和BiLSTM 对于PS特征把握的全

面性不如BiLSTM-CNN,所选PS的数目较BiLSTM少且

占比低。由于幅度离差法、相关系数法、BiLSTM 选取的

总PS不一样,虽然
 

BiLSTM-CNN方法选取的PS占比较

低,但是BiLSTM-CNN网络选取的PS最多。雷达系统

工作在
 

Ku
 

波段时,0.25
 

rad
 

的相位标准差对应的形变测

量精度约为
 

0.332~0.497
 

mm。因此若以0.25
 

rad
 

的标

准差作为
 

PS
 

质量的标准,采用BiLSTM-CNN网络所选

PS数量更多。综合上所述,在植被覆盖的低相干场景下,
相比幅度离差和相关系数,BiLSTM-CNN网络能够在保

证PS相位质量的前提下,选取更多的PS。
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表5 不同方法所选PS相位标准差统计

Table
 

5 Phase
 

standard
 

deviation
 

statistics
 

of
 

PS
 

selected
 

by
 

different
 

methods

相位标准差/rad 方法 数量 占比/%
<0.25 幅度离差法 4

 

875 28.14
相关系数阈值法 4

 

843 23.66
BiLSTM 4

 

697 16.17
CNN 4

 

395 19.71
BiLSTM-CNN 5

 

065 21.48
<0.3 幅度离差法 7

 

899 45.60
相关系数阈值法 7

 

919 38.69
BiLSTM 7

 

806 26.87
CNN 7

 

163 32.13
BiLSTM-CNN 8

 

940 37.91
<0.4 幅度离差法 12

 

972 74.88
相关系数阈值法 13

 

287 64.91
BiLSTM 14

 

088 48.49
CNN 12

 

359 55.43
BiLSTM-CNN 17

 

445 73.98
<0.5 幅度离差法 15

 

393 88.85
相关系数阈值法 16

 

387 80.05
BiLSTM 18

 

408 63.36
CNN 15

 

625 70.08
BiLSTM-CNN 21

 

747 92.22
<0.6 幅度离差法 16

 

490 95.19
相关系数阈值法 18

 

003 87.95
BiLSTM 21

 

328 73.41
CNN 17

 

661 79.21
BiLSTM-CNN 23

 

016 97.60

4 结 论

PS选取数量及质量对地基SAR形变测量至关重要。
本文提出了一种基于BiLSTM-CNN的PS选取方法,该
方法采用BiLSTM和CNN网络对PS全局和局部时序特

征进行学习,并通过 MHSA机制实现对全局和局部时序

特征进行加权融合学习,以构建PS时序特征分类模型。
通过对多植被覆盖场景下实测雷达数据实验分析,有效证

明了本文PS选取方法在保证一定相位质量的前提下比常

规方法及基础网络能选取更多的PS。
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