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Symmetry-constrained between-class variance thresholding method

Zou Yaobin'® Li Wangyang'*
(1. Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, Yichang 443002, China;
2. College of Computer and Information Technology. China Three Gorges University, Yichang 443002, China)

Abstract: In order to improve the thresholding accuracy and adaptability of the existing OTSU thresholding method, a
symmetry-constrained between-class variance thresholding method is proposed. The proposed approach initially employs
the Prewitt operator to construct a gradient magnitude image from the input image, followed by the extraction of
symmetric sampling areas based on the principle of symmetry. Then. a threshold is selected based on the symmetry-
constrained between-class variance objective function maximization criterion, and it is judged whether the symmetric
sampling areas satisfy the symmetry condition under this threshold. If the symmetry condition cannot be satisfied, the
input image is processed with symmetry correction based on the symmetric sampling areas. The threshold is then
selected using the symmetry-constrained between-class variance objective function on the rectified symmetric sampling
area. Finally, the chosen threshold is utilized for thresholding the input image. The performance of the proposed method
is compared with OTSU’s method and four improved methods of OTSU’s method on a dataset comprising 28 synthetic
images and 70 real-world images. Experimental results demonstrate that the proposed method achieves a
misclassification error rate of 0. 010 6 and 0. 016 on synthetic and real-world images, respectively. In comparison to the
second-best method in terms of thresholding accuracy, the proposed method reduces the misclassification error rates by
91.4% and 86. 1% on synthetic and real-world images, respectively. Although the proposed method does not exhibit
superiority in terms of computational efficiency, it demonstrates a more robust thresholding adaptability and higher
thresholding accuracy across diverse modalities of test images.
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Fig.1 The OTSU threshold results of 4 synthesized images

Hh B O T

g 9 D&

I, ~ I, Mg, g B 4RI SO AR iR T HRAR B {8 1M 21062
LM SCFRRIRT OTSU ik iR lE. & FE& I,
DR Shy bR RS 5% 4 R B8 A R (RS oA ELAL P 7 25 40 5
2k L5 K B EJT PR B B R, OTSU J7 2 T 328 19
EAMBEAEREILTFES. WFEG L, REHRME R
P2 R/INHIT] (B2 H b A 5L 25 1 26 0 2 R A4,
GEEL OTSU Jy gk B i B {80 A0 B A8 B0 (5 40 B 22 . % T &
1% 1., BEMESMER/MEARF4r, 0F B &7 L KRB K
T 2K EE R OTSU Jr 2 9 i (3 {8 70 2 A8 1 4 i 22 0
K. MTEMG I, BB R ER/DUARAR 4,
B2 5 RN 5 22 51/, OTSU Jy 12 BT 16 1 {4 A1 48
Bt — 2 i 22 (07 AT L4232 O3 BRI

2 EHB SCM ik

2.1 SCM FiEHIHEZR

M OTSU Jr ik B ik A 0 R S i LR L R T 133
ST RE A B o) B, — Fh 0T RE A SRR 2 1L B AR RN S
WIS B BE A3 A IS AT REX Bk . ol 40 %0 07 vk 35 8 90 AR
EHPLR R IE T B bn, LR R 8 T 15 5, IR BE B3
TE UG B BE MG A LR SR mg . SR L 1 R E B AR A
AL G R, S —EWERRERE, XafF—%
BTG E. SCM AR T —FET AL B REER
TSR R RAE D5 IR TR ED e LT HA
BRI BE 43 A0 X R B R BEAR R IR (B 2, X A5 —
75 AT DR BT AR R AR H ARG R M SRR R N R LG B AR
T 59 A BOREE 59 A —J7 T ST LA P B4 AR R 4
F ] 7 22 H bR s DN AR AR S 0GR b H bR
SR/INEBI IR B Gy Ay 25 SN U T L #BTT L3RS
HR 53 51

M & 2 AT L, SCM. 5 s — 43 S HI Wi 48 ixX 32 2
SR T k2D R 0y BE N . R S R A
0 JR B 43 A K 22 8501 LR BT LA b A 18 3 o A Y
TRA AR D S B IEMR I0 IK BE 43 A IFAS 2 5 4 18 7 43
MHRE . X FJa— P ol , 5 22 0 5 A G E AT 6 Fr
& 1 F AT Ja SR Ak 2
22 SHRESHTHXNMRAREEDFEBH

Xt T4 A BT, B FRR R S50 1 B8 43 A3 7T LA
SR R AR LA . BT RS R SR L S R
BETIRKR B B ok #H755 B HFR RS 54 A i %
SRREAR 2 K A AT BR ) LA A Al R i i LA

SIAWAHYLAE 2 Y f1Z, 400 Fm B AR 5760
G RFEAQ R IR FEBME R 200 0K o spe 50050t s
Y S5Z SR M l—r, MY 5Z 0" TRAE
WA LIE XA X = rN(x | gys0,) + 1 — )N (x |
w0 s ol N (o) R e s,

R i 7 Sy

HAARFMEHEA — 35 —



Big 5 B &

20245 7 B
H435 £ 8

N —
T SSAXTHN B/ HIBISSART FETFSSAE#:
T A e I
————
|
FTFBIEJEHSSA R
ELl LA B R AR
N ——
Bl 2 SCM F kil R HESR
Fig. 2 The overall framework of SCM
EL(X — "] R IR SR g
Skewness(X) = e 7 N _ . _
(E[(X —p)* D" Xof 6 B A (R g PR R — AN IR BE(E kKR BT
WX BE HEE ¢ TIRKEMEKT £ G RE ZMEEBEE M, .
E[(X*#)Sj - M,\.(Iy_’)/):l’ g(z»y)}k

1

TEX =D
A=)y —p ) (A —=2r)(uy — 1) + 360 —061))
(A=) Gy —p)f Foi =) +aD)

&

N T ARG F AR AR S8 AT 0, 2 B e J
T 3 FEIE AR AT LALE v =0 WA EIE 1, =0 8 1: 1578
2. po=pTBH 3, (1—2) (py—p)* +3@1 —67) =0,

XEIE 1, EWE R — 2K X AR5 57005
PIZEHT S AT DL A H 2 W . 158 2 el DLZ s B H be
FIHE S50 K BE Y — A 2 Al ). X EIE 3, 7l Lt — 25
1 3 oi—ol
7 ?(#0*/‘1)20

% 3 KL IEHIE FAAFER v, =0, Y 5 Z iR
G E RN AR T RE . SR, 7 I8 B0 A B R Y B A

1 3 o,—o ., .
ﬁﬁv r=-—+ : : EPH/‘J#O sM1300+07 *ﬁﬁﬁ%ﬁ

22 (ug—p))’

RigEr =

SR BRI L - R %+ % (:ﬁ :

BEARSHE, XTI 5IA—1FBEL.

1 3 o.—o;
V_<7+7m>

KOFRRY 5Z WRA M IRSE, 2o Bk
EOm, y, WMAZEET 0.%xFRY 5 Z MRS
X BRRR,

TER AR FENLAS B Y A1 Z 4390 278 AR A S e 0
G R AR E IR BEE S T (9 & 1 X R 29 31
TR OTSU Hbr eR L, T 20 i AR B EIR T 3173 F
WZRIAR FRBE SRk, BT LA K SF D 1) R 1)
Prewitt 5L X i A JK BE R T 43 590 347 5 B, 45 310 % 1
MABTREE R ER g. Mg, A Vg + g FRABMRY

S = (9

— 36 — MEABRTMELAR

(10)

k

N M, (x,y) =0, glx,y) <k
FAAHIE R EG M, XA BB T 4T RAEIRAT R A
X S, IR M, (x,y) = 1, WX HE I(x.y) GEM
POERMER] S, RHEEBRAIEATIE AR
S, =I(M,) an
MR =X CO) X Bk e T D, T 3 A B /N AN R /Y B AR
PRIER L DA B A K B 43 AR R TT RE AR I B bR R T R OR B
B&# .

k" = arg Enin (| Skewness(S,) |)
kellg,

P g RN E W ME BB ¢ 1Y & KK EHE;
Skewness(S,) TR REEBGELE S, ITHMWE.

G %% B XTI Y S,- R M X FR K K X (symmetrical
sampling area, SSA), 7E#fH SSA J5 ., LUK AE SSA |
He O OTSU Zfi) 5 22 e KM W kAT 45 5 A0 Hh %)
PRI T By 250 7 2 | KA B AR R BOTH SR BE ¢ R
’ ](/\(t)di(t)) (13

a2

t = arg max

(E[SSA . .SSA
min max

A H:SSA ..., Fl SSA .. 430l FE 7~ SSA P e/ IN I B {H Al i
KIREAE . A () #IEADHMA5HH,
0(t) —min(o(z))

A = 1= o)) — min(8 () (v
1 3 (ol(t) —ai(t))

W) = |r() — =4+ ———) | (D)

t rt <z P (#0<z>—,11<t>>2> ‘ 0

2.3 ESHREENH THIEEARE

X T ARG T, SR H B AR R SR BE A M
VL B0 T 7 A 15 20 20 A 40 G A B0 1 SR R XK BE 43 A
AT RE B A B B A X E . S T Ak BRI 1, AT LA YT
A BG T A7 R ERBO TAL 21, AR AR W] DL — e R
168 TE 3 B i 8 R R 43 A R TS SRl R (13) ~ (15) 3t
HEE .

FE X wXww € [2,wn,]) KANKIPIE G, X

Hh BB O T



2024 7 B

e $43% B 7 5

B T AT BB ERAE 15 BRI B 1,
ytnatn
> D016
I«,/,“-(I’y) :W (16)

A w REHERBE SRR, 7 =lw/2 [,

AR ER 1, J5 ] SSA XJ I ) — {8 5 B
B M . XF I, BEATRERMGEREKX S, =
Ly (M) 5 XS, B IR EAT 18 IE 45 21 48 IE AR R A
X S.:

So = S + (max(S ) —min(S,. )) +min(S . )

an
. S, — min(S,,.)

A S = Sy — min(S)°

XA <o X R A IEBERRAE X S, SR~ R H
o BERC LA W 2 IR R 43 AT R AT BE X B Y H AR R SOR A
BE:

w' = arg“_rpiwn J(| Skewness(S.) |) (18)

2,w
ma:

JEEEKS w " XRLE S . FKOMAEIEJE B9 SSA (rectified
symmetrical sampling area, RSSA), 15%] RSSA {# 1] L)
BB ADITEBE ¢, ARIZTFETHRZERH SSA,,
SSA . 73 I RSSA,. Fl RSSA,.. 70 5 # 78 RSSA
VA B /N ¢ JE A TR e R R BB

g 9 D&

2.4 SCM iS5 R

SCM Jr =B A S5, AR S50 S, Ak KA 7
WEHAOSH waw. MRS S, HT HB SSA BY K 4
HRBE NPT MRS, X H AR SR &
Gy A BT B EUR BRI, S, WK/ A IS,
BOJR BE o A 45 H RO DR BE X — AN S5 F 0350 — 7
T8, i B 2 % 2 0. 1 38 8 5 WK % B8R 43 A A 0 £z 3
PR AR A7 A 55 B0 A 1 i A5 B B R 455 kAR B 220 i TS,
PR BE S TS, MK B A AR e B e AR R A WAFRAE . 45
G LR LK FRSE S, ®EN 0.2,

B KA T 5 028w, T 308 SO - 38 %7 D
M B R AE . X TR A BIER T, 055 J bR A 509 K B 4
A7 ME DL WA A LG T e AR T
TR TR, IR w,, &N 1LEMEH 1 X1 K
ANEY S B B XA B R T B A W AR, e 7R
KA BMIFEH 2 O 2X2 FFf. R w,., BWEEK,
Fean 6 Lk b, —J5 1 2 38k S AR, S A — T T A
R 1 Spld AR, SEUE EBMRAEX S, WRFEH
EEFREE RRENKES M EARGT h A
T T 37 0 R BBE 4 A3 2 26 45 R 7™ B b A 8% J5 28 5% Wi 3] 7
S o BIFSMEE . LR BIR T, ORI F i
HEH w,. EH 5,

R2 SCM AHEMEERSR
Table 2 The algorithm steps of SCM

Bk AR SCM
LN IRERG 1
i i B B K BRE A 45 3 B R

1. Xt A EUG T i Prewitt 57 F 5B B IR R ¢ LIK g BIBCRME g
2. for cach £ in 1 : g

3. i 20 (10) DA B2 i B VMG g AR IBUR TR & F —(HSE AR M,

4, A AD A EEE SR M, WEHR T BBCRFEARE S,

5. end for each

6. AR A2) NITA S, R 4 & rh e 1 EA i B2 4 0 LR/ S s
7. 7ES . LR . AOMAD T BE - s

8. %S, WIBI{E " K SSARISTH S, .S, s

9. if Cabs(skewness(S;)) + abs(skewness(S,)) > S,)

10. for each w in 2:w,,,

11. e (16) 154 BN R R R MBI ER 1, 5

12. X AD RFEERBRFEX S,

13. end for each

14. MRIEA A  NBTA S, MR SR £ i e % HAT Bt 2 2 Xt (LN S s
15. 7ES . EEAAD~ADHIEME

16. end if

17. MBI ¢ B A BIMR T T4 b B (A 55 R R R

Hh B O T

EAARFMEEAR  — 37 —



Big 5 B &

3 GRS

LWIRE S EUBRN A E  EEITFMEIER
SCES AT A B A R S B R« Intel (R) Core
(TM) i5-7300HQ 2.50 GHz CPU, 16GB DDR4 N £,
Windows10 64 i #:/F & 4, MATLAB 2021a JF R A,
W3t 5 4 4 L R R B A A A 1 28 i A EEPZH%
70 IE E S A B % Chttps://wwk. lanpv. com/
iKH3glot9vwh) ,

J T VEAR B O I M SR S B E AL S
SCM J5¥& 5 5 F OTSU M & B 77 ik 34T T LWL, 43 3
OTSU Jrik™ 3T 4 By B AR 4 OTSU J7
% (HRDR-2D OTSU) ™, & F = 4 & )5 [ & 2 AR 4 Y
OTSU J{% (HRDR-3D OTSUY ™7, 3 T35 w) )7 22 H
bR RN TS BIE 43 #) )7k (parameter-free thresholding
method, PETM)“", DI & % F Z i 5 508 1IE 19 45 9% 14
OTSU i #t 4> #) 75 ¥ (modified valley metric OTSU,
MVMO)"  FEHEAS FLAR L 56 1 K SCM. Jy 3 Xk 2480
S WENO.2,RRKEMHMTPHREISZH w... KEHNS5. 7
S, MVMO J7 3 17 3 58 08 0 2 R H Ry 117,

SR FH R 180 18 6 8 FH Y 12 6 48 B 1R 43 25 28 (misclas-
sification error, ME) ™ S ¥EA% LA I 6 F J7 vk 1 B9 (8 1k K5
B, A TR #0 BE (precision) . & B R (recall) | 45 5 &

400

3k by

3.1

300

g 200

100

050 100 150 200 250

(a) éﬁ%l
(a) No.1

0 50 100 150 200 250

(© %%6
(c) No.6

50 100 150 200 250
KPBE

(e) G512
(e) No.12

2024F 7 H

$435 F7H  meeeeem

(specificity) . Dice. Jaccard (i #% 2 intersection over u-
nion) %4845, ME & — Fh B & 45 (1 B (H /L B L 6 45 . ME
febn S e T B AL S SR R h B AR R R B KR A
KHEOL, M8 R BRI S % EARAHF N, ME=0; 2,
HEEREG S Z ERE 2R ME=1, ME E&it
A E SR
| F, N F, |+ B, N B, |
| F, [+] B, |

X F, 5B, FxSHEGHHE S5 XE;ME, 5
B, RN EE  BEATREREGHERSE R
B NARRZEFEZR |- [ RRTEES T MR,
3.2 EEHE®BEMLEESR

R B UE SCM 5 ¥k By 3 R L A 7R B E bR A R
MR/ LA AT 28 i A i B R EE H AR AT 5 R/ L
BIARTE SO . 55 A0 TE5 MR LB INAS 5] 2 800 e i
MR P A (R MR P 0D MR P ) MR e DL MR P i g A R
L LUE B A ARG 2 S & ik g . iR
PR A B R AN B 3 BT . B 5 R 9 4t p iR
T BB IR E A 6 FhOrsETER 3 h iy 6 ES AR B
BE LSS RN 4 s,

3 PR 1.3.6.9.12.16 205X RE 6 Fh oy 7 b

i 6 A AR B ME {5, 6 Fh 5 iR 7E ik 6 IE -G n

G0 BE 5 LR B A B ] 5 B, Ho i 3 3k bm 1 op

ME =1— 19

50 100 150 200 250
KEE

(b) 4453
(b)No.3

0

50

‘ 250
S 15

0 50 100 150 200 250
KEE

(d) %59
(d) No.9

0 50 100 150 200 250
KEE

() 4516
(f)No.16

B3 6 M AR A B ok 1R 45 B HOIR I L

Fig. 3

— 38 — MEABRTMEHLAR

6 representative composite test images and their grayscalc histograms

Hh BB O T



20244
F435

¥ ~d
dl

E B 35 Hh A&

(a) S EIBEEUR (b) SCM (c) OTSU (d) HRDR-2D OTSU  (e) HRDR-3D OTSU (f) PFTM (g,) MVMO
(a) Ground truth

B4 6 7 IETE R 3 ~ (D 6 MR 1 1R 1 i 1 fb 25 5
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Table 3 ME values on 28 synthesized images and thresholds selected by 6 methods

ey SCM OTSU HRDR-2D OTSU  HRDR-3D OTSU PFTM MVMO

(ME, 1) (ME, 1) (ME, 1) (ME, ) (ME, ) (ME, 1)
1 (0.001 8,124) (0.466 9,71 (0. 489 0,71) (0. 581 3,103) (0.423 5.73) (0. 488 9,70)
2 (0. 000 3,157) (0.011 0,123) (0. 040 3,129) (0. 388 4,170) (0.016 8,131) (0.072 5,96)
3 (0.000 0,129) (0. 000 5,109) (0. 000 6,139) (0.000 4,148) (0. 000 2,119) (0.016 4,91)
1 (0.001 9,125) (0.102 0,104) (0.002 6,123) (0.151 9,159 (0.002 1,128) (0.071 9,83)
5 (0.002 1,126) (0.002 3,123) (0.003 5,122) (0. 058 8,166) (0.002 3,128) (0. 065 7,172)
6 (0.005 1,147) (0.075 2,112) (0. 040 2,122) (0. 006 3,163) (0.035 2.124) (0.093 9,108
7 (0.013 6,113) (0. 005 0,122 (0.005 1,121 (0. 257 6,160) (0. 005 4,128 (0.072 0,83)
8 (0. 005 9,130) (0.126 1,92) (0. 006 5,122) (0.062 0,166) (0. 005 5,128) (0. 069 2,172)
9 (0. 000 3,156) (0.011 0,123) (0.010 4,124) (0.028 4,170) (0. 006 8,129) (0.102 5,96)
10 (0.001 2,114) (0.002 1,117) (0.090 2,137) (0. 637 9,83) (0.003 4,123) (0.006 0,93
11 (0.000 9,109) (0.015 1,128) (0.011 7,126) (0. 287 4,179) (0. 020 8,132) (0.002 5,114)
12 (0.001 6,109) (0.002 1,117 (0.001 9,117) (0.298 9,154) (0. 009 7,123) (0. 008 3,:89)

B0 4 T FA T EEA 39 —



2024F 7 H

|

Bip S »H & F438 F 78
Pl (4 450 2 SCM OTSU HRDR-2D OTSU  HRDR-3D OTSU PFTM MVMO
(ME, t) (ME, t) (ME., t) (ME. t) (ME. t) (ME., t)
13 (0. 000 4,95) (0.002 1,80) (0. 001 8,83) (0.076 1,123) (0.001 0,86) (0.022 8,59)
14 (0.010 9,124) (0.011 9,112) (0.0111,113) (0.203 7,132) (0.007 1,121) (0.012 8,111)
15 (0. 000 2,125) (0.027 4,135) (0. 000 2,122) (0. 025 3,133) (0.034 4,154) (0.070 3,181)
16 (0. 000 4,95) (0.002 1,80) (0.001 8,83) (0.376 1,123) (0.001 0,86) (0.022 8,59)
17 (0.010 9,128) (0.496 7,70) (0.492 1,73) (0.159 5,96) (0.480 2,75) (0. 325 8,81)
18 (0.000 2,129) (0.043 2,150) (0.007 9,133) (0. 354 3,193) (0.009 2,126) (0.015 2,98)
19 (0.000 4,124) (0.020 7,115) (0.021 8.113) (0.801 0,62) (0.000 7,119) (0.055 2,110)
20 (0.001 0,145) (0.442 6,71) (0.456 4,73) (0.202 7,99) (0.359 7,79) (0.530 6,67)
21 (0.000 4,117) (0.000 3,115) (0.000 9,111) (0.281 5.154) (0.000 4,116) (0.002 7,82)
22 (0.001 0,113) (0.003 9,118) (0.017 8.124) (0.190 3.153) (0.001 0,112) (0.001 1.11D)
23 (0.001 3,103) (0.440 0,71) (0.414 8,73) (0.231 6,153) (0.347 5,73) (0.117 7,111)
24 (0.001 0,112) (0.221 0,132) (0.002 9,112) (0.401 6.153) (0.001 0,111) (0.003 5,108)
25 (0.020 0,117) (0. 658 5,58) (0.658 9,60) (0.670 9,53) (0.770 2,49) (0.679 4,56)
26 (0.053 8,40) (0.173 3,38) (0.233 3,35) (0. 604 3,153) (0.122 1,45) (0.233 4,34)
27 (0. 156 3,84) (0.490 3,51) (0.490 4,53) (0.3217,69) (0.490 3,51) (0.520 6,48)
28 (0. 005 4,105) (0. 359 4,42) (0. 390 5,40) (0.249 6,51) (0. 275 2,48) (0.374 8,41)
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Fig.5 Comparison of thresholds obtained from 6 methods on the synthesized images in Fig. 3
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Table 4 Average CPU runtime and average ME value of 6 methods on 28 synthesized images

o E 7k SCM OTSU HRDR-2D OTSU  HRDR-3D OTSU PFTM MVMO
Time/s 0.048 0 0.001 8 0.078 5 0.112 8 0.046 5 0.003 0
ME 0.010 6 0.150 4 0.139 5 0. 282 4 0.122 6 0.144 9
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Fig. 6 4 real-world images and their grayscale histograms
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Fig. 7 Thresholding results of 6 methods on 4 real images in Fig. 6(a) ~(d)
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Table 5 Average CPU runtime and average ME value of 6 methods on 70 real-world images

Wk | DIRS SCM OTSU HRDR-2D OTSU HRDR-3D OTSU PFTM MVMO
Time/s 0.051 8 0. 000 2 0.087 6 0.322 4 0.070 8 0.018 2
ME 0.016 0 0.169 0 0.164 4 0.216 1 0.115 0 0.193 4
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Fig. 8 Comparison of thresholds obtained by 6 methods on the real-world images in Fig. 6
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