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Research on vehicle adaptive cruise control strategy based on T-S MPC

Liu Xiaolong Zhang Lei Wang Qing Li Ranran An Xin

(School of Automotive and Transportation, Tianjin University of Technology and Education, Tianjin 300222, China)

Abstract: Aiming at the problem that the adaptive cruise system of automobile is not adaptive when facing complex
working conditions, an adaptive cruise hierarchical control strategy based on Takagi-Sugeno fuzzy model predictive
control (T-S MPC) is proposed. Firstly, the upper controller divides the adaptive cruise system into fixed-speed cruise
mode, following mode with multi-objective optimal control and emergency braking mode based on the safety distance
model. The lower controller transforms the desired acceleration output from the upper controller into throttle opening or
braking pressure based on the inverse vehicle dynamics model. Secondly, considering the influence of the weighting
coefficients on the control accuracy, the control strategy is established based on the T-S fuzzy control based variable
weight model predictive controller. Finally, Carsim Simulink joint simulation platform is built to verify the accuracy,
adaptability and tracking response speed of the control strategy. The results show that the tracking response time of the
T-S MPC control method is 1. 54 s, which is faster than the tracking response of PID and traditional MPC control in the
cruising condition. In the following and mixing conditions, the root mean square error of the T-S MPC control method is
0.307 3 and 2. 775, which is lower than that of the PID, PID+ LQR, and traditional MPC control, and it has good
adaptability, which effectively improves the following performance and safety. This effectively improves the following
performance and safety.
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Fig. 1 Automotive adaptive cruise control system
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