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Surface defect detection algorithm for strip steel based
on YOLOvV8-NFMC

Zhu Chengjie Liu Lele Zhu Hongbo

(School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

Abstract: Aiming at the problems of leakage and wrong detection when the YOLOvS8 algorithm is applied to the surface
defect detection of strip steel, an improved YOLOVS algorithm is proposed. For the labels of small targets in the
dataset. normalized Gaussian Wasserstein distance (NWD) is added on top of the original lossy CIOU. which improves
the model’s ability to detect defects of small targets. Focal Modulation is used to replace the spatial pooling pyramid of
the YOLOv8 model, which improves the expression ability of multi-scale features while lightweighting. Mobile inverted
bottleneck Conv (MBConv) is used to replace the Conv in C2f to construct a new module C2f-MB, and at the same time
replace the original C2{-MB with C2{-MB. MB to replace the original C2f module with C2{-MB, which enhances the
feature expression ability and multi-scale feature fusion ability. the convolutional block attention module (CBAM) is
added in the backbone part to suppress the background interference, which can better capture the global information and
improve the feature extraction ability of the backbone part. Experiment results show that the improved YOLOv8
algorithm improves mAP @ 0.5 by 3% while decreasing the computation amount, which significantly improves the
problems of missed detection and wrong detection.
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Fig. 2 Focal modulation diagram and context aggregation diagram
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Table 2 Comparative experiments with different models

R TR ParamCt,CrS R mAP@0. 5/ %
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