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基于YOLOv8-NFMC的带钢表面缺陷检测算法*
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摘 要:针对YOLOv8算法在应用于带钢表面缺陷检测时存在漏检和错检等问题,提出了一种改进
 

YOLOv8
 

算法。针对数

据集中的小目标的标签,在原损失
 

CIOU
 

的基础上面加入标准化高斯瓦瑟斯坦距离(normalized
 

Gaussian
 

Wasserstein
 

dis-
tance,NWD),提升模型对小目标缺陷的检测能力;采用聚焦调制(focal

 

modulation)替换
 

YOLOv8模型的空间池化金字塔

(spatial
 

pyramid
 

pooling-fast,SPPF),在轻量化的同时,提高多尺度特征的表达能力;采用移动翻转瓶颈卷积(mobile
 

inverted
 

bottleneck
 

conv,MBConv)替换
 

C2f中的
 

Conv
 

构建新模块C2f-MB,同时使用C2f-MB替换原有的
 

C2f
 

模块,增强特征表达能

力和多尺度特征融合能力;在主干部分加入卷积块注意力机制(convolutional
 

block
 

attention
 

module,CBAM)来抑制背景干

扰,能更好捕获全局信息,提升了主干部分的特征提取能力。实验结果表明,改进后的
 

YOLOv8
 

算法在计算量下降的同时,

mAP@0.5提高了3%,对漏检和错检等问题有明显改善。
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Abstract:
  

Aiming
 

at
 

the
 

problems
 

of
 

leakage
 

and
 

wrong
 

detection
 

when
 

the
 

YOLOv8
 

algorithm
 

is
 

applied
 

to
 

the
 

surface
 

defect
 

detection
 

of
 

strip
 

steel,
 

an
 

improved
 

YOLOv8
 

algorithm
 

is
 

proposed.
 

For
 

the
 

labels
 

of
 

small
 

targets
 

in
 

the
 

dataset,
 

normalized
 

Gaussian
 

Wasserstein
 

distance
 

(NWD)
 

is
 

added
 

on
 

top
 

of
 

the
 

original
 

lossy
 

CIOU,
 

which
 

improves
 

the
 

model's
 

ability
 

to
 

detect
 

defects
 

of
 

small
 

targets.
 

Focal
 

Modulation
 

is
 

used
 

to
 

replace
 

the
 

spatial
 

pooling
 

pyramid
 

of
 

the
 

YOLOv8
 

model,
 

which
 

improves
 

the
 

expression
 

ability
 

of
 

multi-scale
 

features
 

while
 

lightweighting.
 

Mobile
 

inverted
 

bottleneck
 

Conv
 

(MBConv)
 

is
 

used
 

to
 

replace
 

the
 

Conv
 

in
 

C2f
 

to
 

construct
 

a
 

new
 

module
 

C2f-MB,
 

and
 

at
 

the
 

same
 

time
 

replace
 

the
 

original
 

C2f-MB
 

with
 

C2f-MB.
 

MB
 

to
 

replace
 

the
 

original
 

C2f
 

module
 

with
 

C2f-MB,
 

which
 

enhances
 

the
 

feature
 

expression
 

ability
 

and
 

multi-scale
 

feature
 

fusion
 

ability.
 

the
 

convolutional
 

block
 

attention
 

module
 

(CBAM)
 

is
 

added
 

in
 

the
 

backbone
 

part
 

to
 

suppress
 

the
 

background
 

interference,
 

which
 

can
 

better
 

capture
 

the
 

global
 

information
 

and
 

improve
 

the
 

feature
 

extraction
 

ability
 

of
 

the
 

backbone
 

part.
 

Experiment
 

results
 

show
 

that
 

the
 

improved
 

YOLOv8
 

algorithm
 

improves
 

mAP@0.5
 

by
 

3%
 

while
 

decreasing
 

the
 

computation
 

amount,
 

which
 

significantly
 

improves
 

the
 

problems
 

of
 

missed
 

detection
 

and
 

wrong
 

detection.
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0 引 言

在工业生产中,钢材作为一种重要的结构材料,在各

个领域扮演着不可或缺的角色,在生产工业钢材和加工过

程中可能出现各种缺陷,因此缺陷检测技术至关重要。产

品缺陷检测技术是指对检测样本的表面斑点、凹坑、划痕、
色差、缺损和内部结构等缺陷进行检测,获得检测样本表

面或 内 部 的 缺 陷 深 度、大 小、轮 廓、缺 陷 类 别 等 相 关
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信息[1]。
随着深度学习的不断发展,深度卷积神经网络在目标

检测领域中的应用愈加广泛,现已被应用于农业、交通和

医学等众多领域。深度学习凭借强大的表征和建模能力,
使得目标检测的效率大大提升[2]。深度学习中的目标检

测模型主要分为两种:一阶段算法如 YOLO(you
 

only
 

look
 

once)[3]系列等直接预测目标框和类别;二阶段算法

如Faster-RCNN[4]先生成候选区域再进行分类与回归。
不管是一阶段算法还是二阶段算法,很多学者利用不同的

深度学习模型应用于钢材的缺陷检测,提高了整体的检测

精度和工作效率。文献[5]提出了轻量级带钢表面缺陷检

测模型YOLOv8-VSC,采用 VanillaNet作为特征提取网

络,引入SPD模块加速推理速度,使用CARAFE算子提

高特征融合质量,降低了参数量和计算量的同时提升了检

测精度。文献[6]提出一种小样本驱动的训练样本生成方

法解决钢板制造行业数据匮乏问题,同时结合改进的

YOLOv7算法,优化ELAN模块、引入 ACmix注意力模

块和 WIoU损失函数,显著提升了钢板缺陷检测性。文

献[7]提出了轻量级 DCN-YOLO模型,结合了可形变卷

积网络与YOLOv5,利用DSConv和ECA模块降低计算

复杂度,提高模型灵敏度与泛化能力,为资源受限的边缘

设备提供了高精度的表面缺陷检测解决方案。文献[8]对
YOLOv5模型进行改进,通过引入Transformer自注意力

机制、采用T-BiFPN网络结构和RepVGG轻量化网络,优
化了速度与精度的平衡。文献[9]在建立了一整套无酸除

鳞钢带表面缺陷数据集的基础上对YOLOv3模型进行改

进得到了DF-YOLO
 

检测模型,并且通过引入深度可分离

卷积降低参数量后可以实现钢带表面缺陷的实时检测。
文献[10]提出一种基于改进YOLOX的钢材表面缺陷检

测算法,采用Swin
 

Transformer模块捕获全局上下文信

息,引入加权双向特征金字塔网络进行跨尺度特征融合,
并改进了损失函数,提升了准确率和实用性。对于二阶段

算法,也有一些学者进行了研究,文献[11-12]都基于Fas-
ter

 

R-CNN模型对其优化,并基于此进行带钢表面的缺陷

检测。
通过上述的分析可知,基于深度学习的带钢缺陷检测

方法研究又很多,但是很多都致力于模型最终的体积和检

测精度,针对一些缺陷的错检,漏检的问题研究甚少,本文

针对YOLOv8原模型应对于带钢表面缺陷检测任务时出

现错检,漏检的情况提出了一种改进的YOLOv8的算法。
首先,针对带钢表面缺陷存在小目标缺陷,通过在原损失

中加入标准化高斯瓦瑟斯坦距离(normalized
 

gaussian
 

wasserstein
 

distance,NWD)来提升对小目标标签的检测

能力,使模型提高对小目标的适应性,其次,使用聚集调制

(Focal
 

Modulation)来替换空间池化金字塔(spatial
 

pyra-
mid

 

pooling-fast,SPPF)结构来增强多尺度的表达能力,
再使 用 移 动 翻 转 瓶 颈 卷 积(mobile

 

inverted
 

bottleneck
 

conv,MBConv)来替换C2f中的Conv,并使用改进后的

C2f-MB替换模型中的C2f,在轻量的同时增强特征表达

和融合能力,最后在主干部分引入卷积块注意力机制

(convolutional
 

block
 

attention
 

module,CBAM),来提高主

干部分的特征提取的能力。改进后的算法在 NEU-DET
数据集上进行验证,证实了改进后的算法在带钢表面缺陷

检测方面的可行性。

1 YOLOv8n检测模型及改进

YOLO系列算法是一系列基于深度学习的目标检测

算法,该系列算法通过将目标检测任务转化为一个回归问

题,实现了在图像或视频中同时检测出多个对象的位置和

类别,YOLOv8是这个系列当前最新的模型。

YOLOv8的结构原理可以分为特征提取和目标检测

两个部分。YOLOv8n网络模型主要包含了输入、主干网

络、颈部和头部4个部分。YOLOv8网络模型的主干网络

部分主要是由Conv,SPPF和C2f构成。其中C2f模块参

考了C3模块和ELAN模块的设计思想,C2f结构有着更

多的残差连接,所以梯度流更为丰富。Head部分为目前

主流的解耦头结构(decoupled-head),将分类和检测头分

离。同时采用的是无锚(anchor-free)模型,即直接预测目

标的中心点和宽高比例,而不是预测 Anchor框的位置和

大小。针对目前带钢缺陷检测的现状本文提出了一种改

进的YOLOv8n的网络模型,其改进后算法的结构如图1
所示。

1.1 NWD损失函数

NWD[13]是一种基于 Wasserstein距离的归一化高斯

距离度量,在目标检测中用于衡量预测边界框和真实目标

边界框之间的相似性。它通过将边界框建模为二维高斯

分布,计算它们之间的距离,并使用归一化操作来降低尺

寸和间距等因素的影响。NWD的计算方法是基于将预测

边界框和真实目标边界框建模为二维高斯分布。通过建

模,可以将边界框表示为具有均值和协方差矩阵的高斯分

布。然后,NWD利用这两个高斯分布之间的 Wasserstein
距离来衡量它们之间的相似度,该方法的 Wasserstein距

离计算公式为:

NWD(Na,Nb)=exp-
W2

2(Na,Nb)
C  (1)

式中:C 是与数据集密切相关的常数;W2
2(Na,Nb)是一

个权重参数,用于衡量真实框损失与预测框损失之间的

关系。
在带钢缺陷的数据集中,存在部分的小目标标签,

NWD
 

对不同尺度的目标不敏感,因此更适合测量小目标

之间的相似性,但是又考虑到将 YOLOv8的CIOU全部

换成NWD来计算损失,模型的整体收敛速度会变慢,所
以最后将NWD添加到原模型算法损失函数中去,来提升

模型对小目标的检测能力。通过定义一个权重来将CI-
OU和NWD进行结合,从而更准确地评估目标检测结果

之间的差异和相似性。
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图1 改进的YOLOv8n结构

Fig.1 Improved
 

YOLOv8n
 

structure

1.2 Focal
 

Modulation模块

Focal
 

Modulation[14]由3部分组成,其整体过程如

图2 聚焦调制结构和门控聚合结构

Fig.2 Focal
 

modulation
 

diagram
 

and
 

context
 

aggregation
 

diagram

图2(a)所示。第1部分为焦点上下文(focal
 

contextual-
ization),焦点上下文使用一系列深度卷积来编码不同范

围内的视觉上下文信息。这样的操作可以捕捉从近处到

远处的视觉特征,从而允许网络在不同层次上理解图像内

容。通过这种方式,Focal
 

Modulation的输出关注了多尺

度的上下文,网络能够在聚合上下文信息时保持对局部细

节的敏感性,并增强对全局结构的认识。
第2部分为门控聚合(gated

 

aggregation),门控聚合

过程如图2(b)所示,门控机制在深度学习中常用于控制

信息流,它通常用于决定哪些信息应该被传递,哪些应该

被阻断。在Focal
 

Modulation中门控聚合的目的是为每

个查询令牌(即处理中的数据单元)选择性地聚合上下文

信息,这意味着网络能够决定哪些特定的上下文信息对于

当前处理的查询令牌是重要的,从而专注于那些最相关的
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信息。这种方法提高了模型的效率和性能,因为它减少了

不必要信息的处理,同时增强了对关键特征的关注。
第3部分是逐元素仿射变换,

 

在深度学习中,逐元素

的仿射变换通常指的是对每个元素进行线性变换,这种变

换可以被描述为y=ax+b,其中x 是输入,y 是输出,a
和b是权重的偏差。在Focal

 

Modulation中,逐元素仿射

变换的作用是将聚合后的信息注入到每个查询令牌中,通
过逐元素仿射变换,模型能够更细致地调整每个查询令牌

的特征,根据上下文信息来增强或抑制某些特征。这种精

细的调整机制允许网络更好地适应复杂的视觉场景,提高

对细节的捕捉能力,从而提升了模型在各种视觉任务中的

性能。
使用Focal

 

Modulation替换 YOLOv8中的SPPF结

构可以提高多尺度特征的表达能力,通过使用深度卷积来

编码不同范围内的空间上下文,捕捉从近处到远处的视觉

特征,能够更好地学习到不同尺度的特征,增强对全局结

构的认知,同时通过门控聚合的操作选择性地聚合上下文

信息,专注于那些最相关的信息,从而提升缺陷检测任务

的性能。

1.3 改进的C2f模块

MBConv[15]结构主要由一个1×1的普通卷积来进行

升维,然后经过一个深度卷 积(depthwise
 

convolution,

DWConv)、压缩激励(squeeze
 

excitation,SE)模块进一步

提取特征,通过一个1×1卷积降维后通过一个Dropout
层输出,其结构如图3所示。

图3 MBConv结构

Fig.3 MBConv
 

structure
 

diagram

  其中BN(batch
 

normalization)层可以提供给网络批

标准化,Swish
 

函数可以给网络带来更大的非线性,提高

网络的 拟 合 能 力。MBConv相 比 于 传 统 卷 积,采 用 了

DWConv,其次采用了“倒瓶颈”的结构,特征经历了升维

和降维两个步骤,提高模型的学习能力。

MBConv中融合的SE模块[16]是一种用于增强特征

表达的机制,使得网络能够更加关注信息量最大的通道特

征,并抑制那些不重要的通道特征。通过引入SE模块,
可以提高网络对于重要特征的感知能力,增强网络的表达

能力。SE模块首先将输入的特征图经过全局平均池化操

作,将其压缩成一个1×1×C 的向量,其中C 表示通道

数。然后,这个向量通过一个激励函数进行处理,得到各

通道的权重向量。这个权重向量表示了每个通道对于最

终输出的重要程度。最后,将权重向量与原始特征图进行

逐通道相乘,得到最终的输出结果。这样就实现了对特征

图的通道权重的有效分配,使得网络能够更加关注重要的

特征信息。在本文中使用 MBConv来改进YOLOv8中的

C2f结构,通过使用 MBConv替换C2f中的Bottleneck中

的 Conv构 建 新 的 结 构 C2f-MB,改 进 后 C2f结 构 如

图4所示。

MBConv
 

中的DWConv可以将每个通道的卷积操作

分离开来并且 MBConv是在DWConv基础上增加了升维

和降维两个步骤,从而改进后的C2f结构减少卷积的计算

量和参数数量,进一步提高模型的学习能力和表达能力。
同时 MB

 

Conv中融合的SE模块可以增强特征的表达能

力,通过自适应地对通道进行加权处理,提高模型对于重

图4 C2f-MB结构

Fig.4 C2f-MB
 

structure
 

diagram

要特征的感知能力,也进一步提高了改进后C2f模块的性

能,增强特征表达能力和多尺度特征融合能力。

1.4 CBAM 注意力机制模块
深度学习中的注意力机制是一种仿生概念,模拟人类

对于观察对象内容的特定部分进行重点关注的过程,通过

将注意力聚焦到对象信息的不同位置来提升信息获取的

能力[17]。

CBAM模块[18]主要由通道注意力和空间注意力两部

分组成,对输入进来的特征层分别进行通道注意力模块和

空间注意力模块的处理,是一种用于增强特征表达能力的

注意力模块,CBAM 模块的结构如图5所示。CBAM 模

块是一种简单高效的注意力模块,也是一个轻量级的通用

注意力模块,可以方便地加入到前馈卷积神经网络中,它
沿着两个独立的维度(通道和空间)依次推断注意力图,然
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后将注意力图乘以输入特征图以进行自适应特征细化。

图5 CBAM结构

Fig.5 CBAM
 

structure
 

diagram

本文的带钢缺陷数据集为灰度图像,图像的背景复

杂,部分缺陷相似度高,具有不同尺度、形状和纹理等特

征。这些冗余信息会干扰缺陷的检测,降低检测算法的准

确性,CBAM 模块在通道注意力机制中引入全连接,并通

过全连接降维,有利于提取更重要的信息。本文在主干部

分加入CBAM模块来抑制背景干扰,提高模型的特征提

取能力,更好地捕获全局范围内的重要特征。

2 实验结果与分析

2.1 实验环境与参数设定
本文研究时的环境配置如下:Intel(R)

 

Xeon(R)
 

CPU
 

E5-2686
 

v4,显 卡308-10
 

G,CUDA 版 本11.7.0,OS为

Ubuntu
 

20.04.5
 

LTS,PyTorch版本为1.13.1,CUDA版本

为11.7.0,Python版本3.8.0,设置初始学习率lr0为0.01,
动量(momentum)为0.937,优化器为Adamw,Batch

 

Size为

32,Works为4,IoU为0.5,图片大小为640×640。

2.2 数据集与评估标准
本文所 做 实 验 的 数 据 集 采 用 是 东 北 大 学 发 布 的

NEU-DET数据集,NEU-DET 数据集包含了裂纹(cra-
zing)、夹杂(inclusion)、斑块(patches)、麻点(pitted_sur-
face)、压入氧化铁(rolled-in_scale)及划痕(scratches)这
6类带钢表面缺陷各300张,共计1

 

800张,
 

考虑到数据

集的样本数较少,本文将1
 

800张图片按8∶2的比例将

1
 

440张作为训练集,360作为验证集,各类缺陷图如图6
所示。

图6 各类缺陷图

Fig.6 Diagram
 

of
 

various
 

defects

图7 改进前后各类缺陷精度对比

Fig.7 Comparison
 

of
 

the
 

accuracy
 

of
 

various
 

types
 

of
 

defects
 

before
 

and
 

after
 

improvement

  本文的训练模型指标评估从精确率(precision,P)、召
回率(recall,

 

R)、平均精度均值(mean
 

average
 

precision,
 

mAP)、参数量(Parameters)、计算量(GFLOPs)、帧率对

训练模型进行指标评估。其中,mAP@0.5(IoU阈值大于

0.5的mAP)反映的是模型的精确率随召回率的变化趋

势,该指标的数值越高代表模型越容易在高召回率下保持

这高精确率。

2.3 实验结果及消融实验
 

为保证改进前后的公平性和改进效果的显著性,改进

前后均未载入预训练模型,改进前后6类缺陷精度对比如

图7所示。由图7可知,除了麻点和压入氧化铁的平均精

度(AP)有所轻微下降外,其余4类的缺陷 AP都有所提
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升,其中裂纹提升最大,提高了11.8%。改进后的模型在

参数量上有轻微的提升,但是计算量降低了12.2%,改进

前mAP@0.5为76.2%,改进后的mAP@0.5为79.2%,
较原模型的mAP@0.5提高了3%。

本文通过4个改进方案对网络模型进行了改进,为探

究4个改进方案对研究结构的影响对此进行了消融实验,
实验结果如表1所示。改进1为将 NWD加入到原损失

中,改进2为使用Focal
 

Modulation替换 YOLOv8中的

SPPF结构,改进3为使用C2f-MB结构替换模型中的C2f
结构,改进4为在主干部分加入CBAM。

表1 消融实验

Table
 

1 The
 

ablation
 

experiment

改进1 改进2 改进3 改进4 Layers Parameters 浮点数/GFLOPs mAP@0.5/% 帧率/fps

× × × × 225 3
 

012
 

018 8.2 76.2 72.99

√ × × × 225 3
 

012
 

018 8.2 77.4 71.94

√ √ × × 230 3
 

120
 

053 8.3 78.1 75.19

√ √ √ × 310 3
 

468
 

629 7.2 78.6 67.11

√ √ √ √ 326 3
 

474
 

041 7.2 79.2 62.89

  从上述数据可以看出,在每个改进加入到模型后

mAP@0.5都有所提升,改善模型的检测性能。改进后的

模型较原模型对比在参数量上升了15.7%,计算量下降

了12.2%,mAP@0.5提高3%。改进1对模型的精度提

升最为明显,通过将NWD引入到CIoU中来提升对小目

标的检测性能,mAP@0.5提高1.2%。改进1和改进2组

合时,计算量稍微增加但是帧率增加了3%。改进3的使用

虽然提升了一部分的参数,但是计算量下降了12.2%,

mAP@0.5提高2.4%。在4个改进组合的时候在计算量

降低了12.2%,mAP@0.5提高3%,帧率达到了62.89
 

fps,
改进后的模型通过优化损失函数、增强特征提取能力

和增强了模型对目标物体的表达和感知能力来提升对

小目标 的 更 精 确 的 检 测,进 而 整 体 提 升 模 型 的 检 测

性能。

2.4 不同算法对比
为了验证改进后的YOLOv8n的模型的性能,与当前

的几种主流检测模型文献[7]、文献[19]、YOLOv3[20]、

YOLOv5[21]和YOLOv7[22]对一些指标进行对比,在和本

文同样的数据集下进行改进后的模型进行实验对比,结果

如表2所示。
综合分析上述数据,改进的YOLOv8n的 mAP@0.5

达到了79.2%,与其他目标检测算法相比有效提升了缺

陷检测的精度。其中,对于文献[7]提高2.7%,对于文

献[19]提 高 5.1%,对 于 YOLOv3 模 型 提 高 3.8%,

YOLOv3-Tiny提高8.8%,YOLOv5n模型提高2.7%,

YOLOv5s模型提高3.6%,YOLOv7模型提高3.8%,

YOLOv7-tiny提高8%。在计算量方面,本文方法的计算

量和YOLOv5n模型的计算量相同,比其他模型的参数量

都要少。在参数量方面,除YOLOv5n模型比本文算法少

外,其余算法的参数量都比本文算法要大。改进后的

YOLOv8n模型在模型大小、计算资源消耗和性能之间达

    表2 不同模型对比实验

Table
 

2 Comparative
 

experiments
 

with
 

different
 

models

模型
Parameters
/(×106)

浮点数

/GFLOPs
mAP@0.5/%

文献[7] 16.3 39.5 76.5

文献[19] 5.7 12.2 74.1

YOLOv3 103.7 283.0 75.2

YOLOv3-Tiny 12.13 19.0 70.6

YOLOv5n 2.51 7.2 76.6

YOLOv5s 9.12 24.1 75.6

YOLOv7 37.22 105.2 75.4

YOLOv7-Tiny 6.03 12.3 71.2

本文方法 3.47 7.2 79.2

到了良好的平衡。其具有较少的参数和计算量,同时在

mAP@0.5指标上表现出更高的目标检测性能。在实际

部署中,改进后的YOLOv8n模型能够在保证高效运行的

同时,提供更为准确的目标检测结果,满足了现实场景中

对于精度和效率兼顾的需求。

2.5 检测效果对比

6种类别缺陷样本改进前后的检测如图8所示,每
个标注框上方有标签类别和置信度。改进前后的检测图

对比后可以得到如下两个结论:1)原 YOLOv8n模型对

于一些缺陷存在漏检,错检的情况,改进后的 YOLOv8n
模型对于缺陷的检测更加充分,一定程度上减少了漏检,
错检的情况;2)同一张缺陷图片上的缺陷标签在改进的

YOLOv8n模型检测后的置信度更高,总体的检测性能

更强。
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图8 检测效果对比

Fig.8 Comparison
 

chart
 

of
 

detection
 

effect

3 结 论

本文提出了一种改进的 YOLOv8n算法模型应用于

工业钢铁表面缺陷检测。首先,在原损失函数CIoU中加

入NWD来计算损失,提升对小目标的检测性能;其次Fo-
cal

 

Modulation替换YOLOv8中的SPPF结构,提升多尺

度的特征表达能力;然后使用C2f-MB结构替换模型中的

C2f结构,在降低计算量的同时增加重要特征的权重。最

后,引入CBAM注意力机制,来增强主干网络的特征提取

能力。改进后的模型在计算量下降12.2%的情况下,模
型整体的性能获得提升。但是最后训练的模型中,部分类

别精度存在偏低的问题,可能是因为训练集和验证集标签

数目太少的原因。后续将继续优化网络结构,增强数据

集,进一步提升模型的检测能力。
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