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多策略融合的改进麻雀搜索算法及其AGV
路径规划应用
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摘 要:针对麻雀搜索算法(sparrow
 

search
 

algorithm,SSA)存在依赖初始种群分布,易于陷入局部最优解,以及迭代后期种群

多样性减少等问题,提出一种多策略融合的改进麻雀搜索算法(improved
 

sparrow
 

search
 

algorithm,ISSA)。首先,采用Sobol
序列初始化种群,保证初始种群的多样性;其次,分别引入随机反向学习策略和螺旋觅食策略改进发现者位置更新公式和加

入者位置更新公式,以增强算法的全局搜索能力和跳出局部最优解的能力;最后,引入柯西变异对可能陷入局部最优解的麻

雀进行扰动。实验选取9个标准测试函数进行性能测试,实验结果表明,改进后的算法性能有较大提升。将ISSA应用于

AGV(automated
 

guided
 

vehicle)路径规划,在3种地图环境下分别可以达到最优值13.135
 

6、28.834
  

5和44.364
 

9,寻优能力

和稳定性较原算法有较大提升。
关键词:麻雀搜索算法;随机反向学习;螺旋觅食;测试函数;AGV路径规划
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Abstract:
  

This
 

paper
 

proposes
 

an
 

improved
 

sparrow
 

search
 

algorithm
  

(ISSA)
 

with
 

multi
 

strategy
 

fusion
 

to
 

address
 

the
 

issues
 

of
 

dependence
 

on
 

initial
 

population
 

distribution,
 

susceptibility
 

to
 

local
 

optima,
 

and
 

reduced
 

population
 

diversity
 

in
 

the
 

later
 

stages
 

of
 

iteration
 

in
 

sparrow
 

search
 

algorithm
 

(SSA).
 

Firstly,
 

the
 

population
 

is
 

initialized
 

using
 

Sobol
 

sequences
 

to
 

ensure
 

the
 

diversity
 

of
 

the
 

initial
 

population.
 

Secondly,
 

random
 

reverse
 

learning
 

strategy
 

and
 

spiral
 

foraging
 

strategy
 

are
 

introduced
 

to
 

improve
 

the
 

discoverer
 

position
 

update
 

formula
 

and
 

the
 

joiner
 

position
 

update
 

formula,
 

respectively,
 

to
 

enhance
 

the
 

algorithm's
 

global
 

search
 

ability
 

and
 

ability
 

to
 

jump
 

out
 

of
 

local
 

optimal
 

solutions.
 

Finally,
 

introducing
 

Cauchy
 

variation
 

to
 

perturb
 

sparrows
 

that
 

may
 

fall
 

into
 

local
 

optima.
 

Nine
 

standard
 

test
 

functions
 

were
 

selected
 

for
 

performance
 

testing
 

in
 

the
 

experiment,
 

and
 

the
 

results
 

showed
 

that
 

the
 

improved
 

algorithm
 

had
 

a
 

significant
 

improvement
 

in
 

performance.
 

Applying
 

ISSA
 

to
 

Automated
 

Guided
 

Vehicle
 

(AGV)
 

path
 

planning
 

can
 

achieve
 

optimal
 

values
 

of
 

13.135
 

6,
 

28.834
 

5,
 

and
 

44.364
 

9
 

in
 

three
 

map
 

environments,
 

respectively.
 

The
 

optimization
 

ability
 

and
 

stability
 

of
 

the
 

algorithm
 

are
 

significantly
 

improved
 

compared
 

to
 

the
 

original
 

algorithm.
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0 引 言

群体智能优化算法通常是根据生物的觅食,繁衍等行

为或群体事物的特性所设定的。近年来,新型群体智能优

化算法发展迅速,各种新型群体智能优化算法层出不穷,

如灰狼优化算法(grey
 

wolf
 

optimizer,GWO)[1]、鲸鱼优化

算法(whale
 

optimization
 

algorithm,WOA)
 [2]、蛇优化算

法(snake
 

optimization,SO)
 [3]、蜣螂优化算法(dung

 

beetle
 

optimizer,DBO)
 [4-5]等。此类算法应用范围广泛,可被应

用于AGV(automated
 

guided
 

vehicle)路径规划[6]、故障诊
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断[7]、图像处理[8]等领域。由于传统的算法多数存在易于

陷入局部最优解,全局搜索能力不足等缺点,围绕传统算

法进行改进已成为当今研究的热点。
麻雀搜索算法(sparrow

 

search
 

algorithm,
 

SSA)是
Xue等[9]于2020年提出的一种新型群体智能优化算法,
其具有结构简单,实现容易,调节参数少等优点,但仍存在

依赖初始种群分布,跳出局部最优解能力弱,迭代后期种

群多样性减少,全局搜索能力减弱等问题。针对这些问

题,许多学者对麻雀搜索算法进行了改进。李江华等[10]

提出了一种混合多策略改进的麻雀搜索算法,引入精英反

向学习策略初始化种群,在加入者位置中引入Circle映射

参数与余弦因子,并采用自适应机制随机选择麻雀个体,
对其使用Levy飞行进行扰动,改进后的算法在寻优速度

和收敛速度等方面有较大的提升。回立川等[11]提出了一

种多策略改进的麻雀搜索算法,引入领域重心反向学习策

略初始化种群,引入Levy飞行改进发现者位置更新公式,
引入自适应权重和Levy飞行改进加入者位置更新公式,
改进后的算法在稳定性,收敛性和搜寻精度方面有更优的

效果。Yang等[12]提出了一种基于混沌映射和t分布变异

的自适应麻雀搜索算法,引入Sine混沌映射初始化种群,
引入动态自适应权重策略改进发现者位置更新公式,最后

引入t分布自适应进行扰动,改进后的算法可以获得更好

的寻优能力,收敛精度和收敛速度。苏莹莹等[13]提出了

一种自适应混合策略麻雀搜索算法,引入Tent混沌映射

和精英种群策略初始化种群,引入周期性自适应收敛因子

改进发现者位置更新公式,调整加入者和预警者位置更新

方式,最后引入多项式变异扰动,改进后的算法具有更好

的寻优能力。
本文提出一种多策略融合的改进麻雀搜索算法(IS-

SA),引入Sobol序列初始化种群,提升种群的多样性,使
算法在迭代初期能进行广泛的搜索;引入随机反向学习策

略改进发现者位置更新公式,提升算法的全局搜索能力;
引入金枪鱼群优化算法螺旋觅食策略改进加入者位置更

新公式,提升算法的局部搜索能力;最后引入柯西变异策

略对可能陷入局部最优解的麻雀个体进行扰动,帮助其跳

出局部最优解。将改进后的算法使用9个标准测试函数

测试其性能,并应用于AGV路径规划。通过实验可以看

出,改进后算法的寻优能力、收敛性和稳定性都有较大提

升,验证了其在解决AGV路径规划问题时的优越性与可

行性。

1 麻雀搜索算法原理

麻雀搜索算法[9]是受到自然界中麻雀的捕食与反哺

食行为的启发而提出的一种群体智能优化算法。在麻雀

种群中,根据每个麻雀的能量储备(即适应度值)高低,可
将麻雀分为发现者和加入者两类。发现者一般占整个种

群的10%~20%,且具有较高的能量储备,负责搜寻食

物。剩余的麻雀则为加入者,加入者中能量储备较高的麻

雀会时刻监视发现者并围绕其觅食,能量储备较低的麻雀

则会飞往别处觅食。一个种群中发现者和加入者的比例

是固定的,但每个麻雀所属的类别是根据能量储备不断变

化的。同时,麻雀具有非常高的警惕性,有一部分的麻雀

会成为预警者,一般占整个种群的10%~20%,当其感知

到危险时,就会迅速向安全区域移动。
麻雀搜索算法的数学模型如下:

X =

x1,1 x1,2 … x1,d

x2,1 x2.2 … x2,d

︙ ︙ ⋱ ︙

xn,1 xn,2 … xn,d

􀭠

􀭡
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(1)

式(1)表示一个麻雀种群,n表示种群中麻雀数量,d
表示待求解问题的维数。

全体麻雀的适应度值如下:

F =

f([x1,1,x1,2,…,x1,d])

f([x2,1,x2,2,…,x2,d])
︙

f([xn,1,xn,2,…,xn,d])

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(2)

发现者的位置更新公式如下:

Xt+1
i,j =

Xt
i,j·exp-

i
α·itermax  , R2<ST

Xt
i,j +Q·L, R2≥ST (3)

式中:t表示当前迭代次数;itermax 表示最大迭代次数;α
和Q 为随机数,α在(0,1]范围内,Q 为服从正态分布;L
为一个1×d 的全1矩阵;R2 在 [0,1]范围内,表示预警

值;ST 在 [0.5,1]范围内,表示安全值。
当R2<ST 时,周围环境较为安全,发现者可以进行

广泛的搜寻。当R2 ≥ST 时,有一部分麻雀预感到了危

险,发现者随即迅速飞往其他区域觅食。
加入者的位置更新公式如下:

Xt+1
i,j =

Q·exp
Xworst-Xt

i,j

i2  , i>
n
2

Xt+1
p +|Xt

i,j -Xt+1
p |·A+·L, 其他 (4)

式中:Xworst 表示在第t次迭代中,在第j维处于最差位置

的元素;Xt+1
p 表示在第t+1次迭代中,发现者在第j维处

于最优位置的元素;A+=AT(AAT)-1,A 为一个1×d 的

矩阵,矩阵中的元素随机赋值1或-1。

当i>
n
2

时,表示第i个麻雀的能量储备很低,需要

飞往其他地方觅食。其他麻雀则围绕处于最优位置的麻

雀觅食。
预警者的位置更新公式如下:

Xt+1
i,j =

Xt
best+β·|Xt

i,j -Xt
best|, fi>fg

Xt
i,j +K· |Xt

i,j -Xt
worst|

(fi-fw)+ε  , fi =fg 
(5)

式中:Xt
best 表示在第t次迭代中,在第j维处于最优位置
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的元素;β和K 为随机数,β服从标准正态分布,用作控制

步长,K 在[-1,1]范围,控制麻雀移动的方向;fi 为第i
个麻雀的适应度值;fg 为当前全局最优适应度值;fw 为

当前全局最差适应度值;ε 为一个大于0的极小值,以防

止分母为0。
当fi>fg 时,麻雀正处于种群边缘位置,预感到危

险时迅速靠近种群中心。当fi =fg 时,麻雀正处于种群

中心,预感到危险时迅速靠近其他麻雀。

2 改进麻雀搜索算法

2.1 Sobol序列初始化麻雀种群
在群体智能优化算法中,种群的初始位置分布对算法

的寻优能力和收敛速度有着至关重要的作用,初始位置分

布均匀的种群能使算法较快的进入最优区间,进而提升算

法的搜索精度。基本麻雀搜索算法采用随机方式生成麻

雀种群,设置种群数量为100,上限和下限分别为0和1,
在三维空间中通过随机方式生成的麻雀种群如图1所示。
从图1可以看出,由于随机生成的麻雀种群在空间分布无

规律,导致麻雀种群在空间中分布不均匀,存在种群聚集

的现象。这会限制麻雀种群的搜索范围,使麻雀种群易于

陷入局部最优解,影响算法的收敛速度和寻优精度。为降

低种群分布不均匀对算法性能造成的影响,本文引入

Sobol序列初始化麻雀种群。

图1 随机方式生成麻雀种群

Fig.1 Random
 

generation
 

of
 

sparrow
 

population

Sobol序列[14]是一种低差异序列,序列中相邻点间的

距离较小,并且在多维空间中均匀分布。设置种群数量为

100,上限和下限分别为0和1,在三维空间中通过Sobol
序列生成的麻雀种群如图2所示。从图2可以看出,麻雀

种群在空间中分布较为均匀,覆盖面积广泛。
通过Sobol序列生成麻雀种群公式如下:

xi =lb+Kn ×(ub-lb) (6)

式中:lb为搜索空间的下限;ub 为搜索空间的上限;Kn

为通过Sobol序列产生的数,在 [0,1]范围内。

2.2 发现者位置更新方式改进
在基本麻雀搜索算法的发现者位置更新公式中,当

R2<ST 时,可以发现每一维的值都在减小,随着迭代次

数的增加,种群极有可能向原点靠近。这会导致种群大量

图2 Sobol序列生成麻雀种群

Fig.2 Sobol
 

sequence
 

generated
 

sparrow
 

population

聚集在原点附近,种群多样性减少,不利于算法进行广泛

的全局搜索。本文引入随机反向学习策略对发现者位置

更新方式进行改进,增强算法的全局搜索能力。
随机反向学习策略是Long等[15]在反向学习的基础

上提出的,该策略在反向解中引入随机因子,扩大了反向

解的分布范围,增加了种群的多样性,提升了算法全局搜

索的能力,其示意图如图3所示。随机反向学习公式

如下:

xrand =lb+ub-rand×xi (7)
式中:lb为搜索空间的下限;ub为搜索空间的上限;rand
为[0,1]区间内的随机数。

图3 随机反向学习示意图

Fig.3 Schematic
 

diagram
 

of
 

random
 

reverse
 

learning

同时引入贪婪机制与式(3)上半部分进行比较,选取

适应度值较小的策略更新麻雀个体位置,如式(8)所示。
在防止原先已接近全局最优解的麻雀跳出该位置的同时,
扩大麻雀的搜索范围,丰富麻雀种群的多样性。改进后的

发现者位置更新公式如式(9)所示。

Xbetter =

Xorigin =Xt
i·exp-

i
α·itermax  ,

 f(Xorigin)≤f(Xreverse)

Xreverse =lb+ub-rand×Xt
i,

 f(Xorigin)>f(Xreverse)

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(8)

Xt+1
i =

Xbetter, R2<ST
Xt

i+Q·L, R2≥ST (9)

2.3 加入者位置更新方式改进
根据加入者位置更新公式可以看出,适应度值较小的

加入者会迅速靠近处于最优位置的麻雀个体,聚集在最优

个体附近,易于陷入局部最优解。本文受到金枪鱼群优化

算法中的螺旋觅食策略启发,改进加入者位置更新方式,
从而增强加入者的局部搜索能力。

金枪鱼群优化算法(tuna
 

swarm
 

optimization,TSO)[16]

是基于金枪鱼群的觅食策略提出的一种新型智能优化算
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法,其中一种觅食策略是螺旋觅食策略。当金枪鱼群遇到

猎物时,会形成紧密的螺旋追逐猎物。同时,每个金枪鱼

个体之间还会相互交换信息,紧紧跟随其相邻个体,并随

着最优个体进行位置移动。其位置更新公式如下:

Xt+1
i =

α1·(Xt
best+β·|Xt

best-Xt
i|)+

 α2·Xt
i, i=1

α1·(Xt
best+β·|Xt

best-Xt
i|)+

 α2·Xt
i-1, i=2,3,…,n

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

(10)

α1 =a+(1-a)×
t

tmax

α2 = (1-a)-(1-a)×
t

tmax

β=ebl×cos(2πb)

l=e
3cos tmax+

1
t  -1  π  

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(11)

式中:α1 和α2 是控制个体向最优个体和前一个个体移动

趋势的权重向量;a为在初期追随最佳个体和前一个个体

的程度的常量;t为当前迭代次数;tmax 为最大迭代次数。
若最优个体未能搜寻到猎物,金枪鱼群则会随机选择

目标点进行螺旋搜索,扩大种群的搜索范围。
改进后加入者位置更新公式如下:

Xt+1
i =

Q·exp
Xworst-Xt

i

i2  , i>n
2

α1·(Xt
best+β·|Xt

best-Xt
i|)+

 α2·Xt
i, i=m

α1·(Xt
best+β·|Xt

best-Xt
i|)+

 α2·Xt
i-1, 其他

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(12)

式中:m 表示适应度最好的发现者麻雀所在位置。

2.4 柯西变异扰动
在迭代过程中,一些麻雀个体可能已陷入局部最优

解,从而造成前后两次迭代适应度值变化较小,将这类麻

雀通过式(13)进行标定。

f(xt+1
i )-f(xt

i)<
∑

n

i=1
f(xt+1

i )-f(xt
i)

n
(13)

式中:f(xt+1
i )表示第i只麻雀在第t+1次迭代时的适应

度值;f(xt
i)表示第i只麻雀前一次迭代时的适应度值;n

表示麻雀个数。
当麻雀个体的适应度值变化程度小于麻雀种群平均

适应度值变化程度时,该麻雀可能陷入了局部最优解。为

帮助该类麻雀跳出局部最优解,引入柯西变异对其进行

扰动。
柯西变异即为柯西分布,是一种连续型概率分布。如

图4所示,柯西分布相比于高斯分布,峰值较小,衰减速度

平缓,尾部衰减速度较慢,变异范围更加均匀,具有较好的

扰动能力[17]。标准柯西变异表达式如式(14)所示。

newxt+1
i =xt+1

i +xt+1
i ×tanπu-

1
2    (14)

图4 高斯分布和柯西分布概率曲线

Fig.4 Probability
 

curves
 

of
 

Gaussian
 

distribution
 

and
 

Cauchy
 

distribution

同样,为防止已接近全局最优位置的麻雀跳出该区

域,采用贪婪机制判断柯西变异后的麻雀是否处于更优位

置,如式(15)所示。

xt+1
i =

newxt+1
i , f(newxt+1

i )<f(oldxt+1
i )

oldxt+1
i , f(newxt+1

i )≥f(oldxt+1
i ) (15)

综上所述,改进后的算法流程如图5所示。

3 算法性能测试

3.1 实验设置
为了验证多策略融合的改进麻雀搜索算法具有良好

的寻优能力和收敛能力,本文选取9个标准测试函数f1~
f9 进行实验,如表1所示。其中,f1~f4 为单峰函数,

f5~f7 为多峰函数,f8~f9 为固定维多峰函数,单峰函

数常用于评估算法的全局搜索能力,多峰函数常用于评估

算法跳出局部最优解的能力。并将多策略融合的改进麻

雀搜索算法与SSA[9]、TSO[16]、粒子群优化算法(particle
 

swarm
 

optimization,
 

PSO)[18]、GWO[1]、WOA[2]进行对比

实验,各算法参数设置如表2所示。为了确保实验的公平

性,设置种群数量为30,最大迭代次数为500,每种算法独

立运行30次。实验采用 MATLAB
 

2022a平台,系统为

Windows10,处理器为 AMD
 

Ryzen7
 

5800H
 

with
 

Radeon
 

Graphics
 

3.20
 

GHz。运行结果如表3所示,最优值越接近

测试函数最小值,平均值越接近最优值,标准差越小,则算

法的寻优能力和稳定性更强。再单独运行每个测试函数,
得出各个算法的收敛曲线,如图6所示。

对于测试函数f1~f7,由于通过Sobol序列生成的初

始种群直接命中最优位置,为了展示改进算法的寻优能

力,对处在最优位置的个体进行扰动。

3.2 实验结果分析
通过表3可以看出,在单峰函数中,ISSA的各项指标

均能达到最优,相较于SSA有明显的提升,结合图6(a)~
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图5 改进麻雀搜索算法流程

Fig.5 Improved
 

sparrow
 

search
 

algorithm
 

flow
 

chart

表1 测试函数

Table
 

1 Test
 

Functions

测试函数 维度 范围 最小值

f1(x)=∑
n

i=1
x2

i 30 [-100,100] 0

f2(x)=∑
n

i=1
|xi|+􀰒

n

i=1
|xi| 30 [-10,10] 0

f3(x)=∑
n

i=1
∑
i

j=1
xj  2

30 [-100,100] 0

f4(x)= maxi{|xi|,1≤i≤n} 30 [-100,100] 0

f5(x)=∑
n

i=1

[x2
i-10cos(2πxi)+10)] 30 [-5.12.5.12] 0

f6(x)= -20exp-0.2
1
n∑

n

i=1
x2

i  -exp 1
n∑

n

i=1
cos2πxi  +20+e 30 [-32,32] 0

f7(x)=
1
4

 

000∑
n

i=1
x2

i-􀰒
n

i=1
cos

xi

i  +1 30 [-600,600] 0

f8(x)=
1
500+∑

25

j=1

1

j+∑
2

i=1

(xi -aij)6
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

-1

2 [-65.536,65.536] 0.998
 

0

f9(x)= -∑
10

i=1

[(x-ai)(x-ai)T+ci]-1 4 [0,10] -10.536
 

4
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表2 算法参数设置

Table
 

2 Algorithm
 

parameter
 

settings

算法 参数

ISSA PD =0.2,SD =0.1,ST =0.8,a=0.7
SSA PD =0.2,SD =0.1,ST =0.8
TSO z=0.05,a=0.7

PSO c1 =c2 =2,wmax =0.9,wmin =0.2

GWO ainitial =2,afinal =0

WOA b=1,ainitial =2,afinal =0

(d)可以看出,ISSA的收敛速度快,较其他算法有较大程

度的提升。这表明ISSA具有较强的全局搜索能力。在

多峰函数中,对于函数f5、f6、f7,ISSA、SSA和TSO
 

3种

算法在每次运行时都能达到测试函数的最小值,结合图6
(e)~(g)可以看出,ISSA的收敛速度较SSA和TSO有

大幅度的提升,在迭代初期就可以收敛到全局最优;对于

函数f8,ISSA的平均值和标准差虽然略差于TSO,但是

和其他算法相比仍有较大提升,结合图6(h)可以看出,IS-
SA的收敛速度也较快;对于函数f9,ISSA各项指标均为

最优,结合图6(i)可以看出,ISSA的收敛速度更快。这表

明ISSA跳出局部最优解的能力较强。
由上述分析可知,ISSA在面对不同类型的测试函数

时所表现出的良好寻优能力,具有较为优异的全局搜索能

力,跳出局部最优解的能力强,稳定性和收敛性较好。

表3 测试函数运行结果

Table
 

3 Test
 

function
 

run
 

results

测试函数 算法 最优值 平均值 标准差

ISSA 0 0 0

SSA 9.787
 

6×10-267 1.441
 

8×10-65 7.897
 

3×10-65

f1

TSO 7.205
 

9×10-263 1.684
 

7×10-228 0

PSO 6.570
 

8×10-6 3.469
 

9×10-4 9.060
 

4×10-4

GWO 4.610
 

7×10-29 1.268
 

7×10-27 1.809
 

6×10-27

WOA 3.624
 

8×10-86 9.356
 

9×10-73 2.985
 

7×10-72

ISSA 0 1.770
 

6×10-234 0

SSA 0 1.867
 

8×10-43 1.021
 

9×10-42

f2

TSO 1.839
 

8×10-129 1.762
 

2×10-116 8.623
 

5×10-116

PSO 2.403
 

0×10-3 3.641
 

3×10-2 6.061
 

5×10-2

GWO 1.206
 

7×10-17 1.188
 

3×10-16 1.497
 

0×10-16

WOA 2.212
 

9×10-58 4.625
 

7×10-51 2.337
 

4×10-50

ISSA 0 0 0

SSA 0 9.739
 

6×10-51 5.334
 

6×10-50

f3

TSO 4.908
 

3×10-245 4.911
 

4×10-213 0

PSO 28.759
 

6 83.771
 

8 35.528
 

4

GWO 1.206
 

8×10-8 9.417
 

5×10-6 3.626
 

3×10-5

WOA 1.534
 

3×104 4.326
 

0×104 1.441
 

3×104

ISSA 0 6.421
 

3×10-229 0

SSA 0 6.682
 

5×10-40 3.356
 

4×10-39

f4

TSO 8.456
 

6×10-129 1.016
 

1×10-113 3.863
 

9×10-113

PSO 6.734
 

0×10-1 1.057
 

1 2.108
 

3×10-1

GWO 1.750
 

5×10-7 1.158
 

6×10-6 1.363
 

8×10-6

WOA 2.331
 

6×10-1 44.882
 

6 26.606
 

4

ISSA 0 0 0

SSA 0 0 0

f5 TSO 0 0 0

PSO 28.873
 

8 56.723
 

5 14.847
 

5
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续表

测试函数 算法 最优值 平均值 标准差

GWO 0 2.811
 

4 4.643
 

4

WOA 0 3.789
 

6×10-15 2.075
 

6×10-14

ISSA 0 0 0

SSA 0 0 0

f6

TSO 0 0 0

PSO 2.685
 

7×10-3 2.187
 

1×10-1 4.616
 

6×10-1

GWO 7.460
 

7×10-14 1.031
 

5×10-13 1.659
 

8×10-14

WOA 0 3.552
 

7×10-15 2.468
 

5×10-15

ISSA 0 0 0

SSA 0 0 0

f7

TSO 0 0 0

PSO 2.144
 

5×10-6 1.060
 

3×10-2 1.019
 

9×10-2

GWO 0 4.607
 

1×10-3 6.978
 

0×10-3

WOA 0 5.463
 

4×10-3 2.992
 

4×10-2

ISSA 9.980
 

0×10-1 1.064
 

1 3.622
 

5×10-1

SSA 9.980
 

0×10-1 8.136
 

3 5.554
 

4

f8

TSO 9.980
 

0×10-1 9.980
 

0×10-1 3.570
 

9×10-16

PSO 9.980
 

0×10-1 3.005
 

5 2.216
 

3

GWO 9.980
 

0×10-1 3.818
 

6 3.052
 

7

WOA 9.980
 

0×10-1 3.713
 

8 3.542
 

3

ISSA -10.536
 

4 -10.536
 

4 2.424
 

0×10-15

SSA -10.536
 

4 -9.995
 

6 1.650
 

1

f9

TSO -10.536
 

4 -10.536
 

4 3.282
 

1×10-15

PSO -10.536
 

4 -9.521
 

4 2.341
 

5

GWO -10.536
 

2 -10.264
 

4 1.481
 

3

WOA -10.536
 

1 -7.917
 

9 2.881
 

0

3.3 Wilcoxon秩和检验
为了更进一步展示ISSA的性能,采用 Wilcoxon秩和

检验判断ISSA与SSA、TSO、PSO、GWO、WOA算法之

间是否存在显著差异,以展现出ISSA性能的提升程度。

Wilcoxon秩和检验是一种非参数统计方法,设置显著性

水平为5%,并计算p 值。当p<0.05时,表示两种算法

之间存在显著性差异。当p>0.05时,表示两种算法性能

相当,不存在显著性差异。NAN表示两种算法运行结果

相同,无法进行显著性分析。
设置相同的实验条件,Wilcoxon秩和检验结果如表4

所示。对于函数f5、f6、f7,ISSA无法与SSA和TSO进

行显著性分析,是因为3种算法每次迭代都可以搜寻到函

数最小值。除此之外,ISSA在大部分情况下和其他算法

相比存在显著性差异。这表明ISSA的性能较原算法有

较大提升,并且相较于其他算法也展现出了更为优异的性

能,进一步验证了ISSA的优越性。

4 AGV路径规划应用

4.1 地图建模
本文使用栅格法建立地图模型,栅格法具有容易实

现,可拓展性强等特点,常用于构建路径规划地图。构建

N ×N 大小的地图,并均匀分割成N 行N 列大小相等的

正方形栅格,白色栅格表示空白区域,路径规划时可以从

该区域经过。黑色栅格表示障碍物,路径规划时需要避开

该区域。本文分别构建了10×10、20×20和30×30大小

的栅格地图,如图7~9所示,用于研究多策略融合的改进

麻雀搜索算法在简单和复杂环境下的寻优能力。

4.2 仿真分析
将多策略融合的麻雀搜索算法与基本麻雀搜索算法

进行对比实验,以验证多策略融合的麻雀搜索算法在进行

路径规划时较基本麻雀搜索算法性能有较大提升。两种

算法参数设置同表2,种群数量为30,迭代200次,分别在
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图6 不同测试函数收敛曲线

Fig.6 Convergence
 

curve
 

of
 

different
 

test
 

functions

表4 Wilcoxon秩和检验

Table
 

4 Wilcoxon
 

rank
 

sum
 

test

测试函数 SSA TSO PSO GWO WOA

f1 1.21×10-12 1.21×10-12 1.21×10-12 1.21×10-12 1.21×10-12

f2 5.57×10-10 3.02×10-11 3.02×10-11 3.02×10-11 3.02×10-11

f3 4.57×10-12 1.21×10-12 1.21×10-12 1.21×10-12 1.21×10-12

f4 4.30×10-8 3.02×10-11 3.02×10-11 3.02×10-11 3.02×10-11

f5 NAN NAN 1.21×10-12 4.47×10-12 3.34×10-1

f6 NAN NAN 1.21×10-12 1.16×10-12 3.63×10-9

f7 NAN NAN 1.21×10-12 3.13×10-4 3.34×10-1

f8 5.02×10-10 6.03×10-6 3.28×10-6 1.19×10-11 3.05×10-11

f9 1.16×10-8 3.51×10-2 6.90×10-1 9.31×10-12 9.31×10-12
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图7 10×10栅格地图

Fig.7 10×10
 

grid
 

map

图8 20×20栅格地图

Fig.8 20×20
 

grid
 

map

图7~9的栅格地图环境下运行,运行结果如表5所示。
从表5可以看出,在10×10大小栅格地图环境中,

ISSA和SSA的最优值相同,但ISSA的标准差和平均值

都优于SSA。在20×20和30×30大小栅格地图环境中,

    

图9 30×30栅格地图

Fig.9 30×30
 

grid
 

map

表5 栅格地图运行结果

Table
 

5 Grid
 

map
 

run
 

results

地图大小 算法 最优值 标准差 平均值

10×10
ISSA 13.135

 

6 0 13.135
 

6
SSA 13.135

 

6 0.715
 

3 14.825

20×20
ISSA 28.834

 

5 0.319
 

8 29.110
 

9
SSA 30.225

 

3 1.455
 

9 33.474
 

8

30×30
ISSA 44.364

 

9 0.668
 

7 45.916
 

2
SSA 48.953

 

6 3.937
 

8 56.433
 

4

ISSA各项指标都优于SSA,且都有较为明显的提升。

ISSA和SSA 在3个栅格地图环境下路径曲线如

图10所示。在10×10大小栅格地图环境中,对比图10
(a)和(b)可以看出,SSA的曲线较为曲折,而ISSA的曲

线较为平滑。在20×20大小栅格地图环境中,对比图10
(c)和(d)同样可以看出,ISSA的曲线相较于SSA的曲线

较为平滑,弯折较少。在30×30大小栅格地图环境中,对
比图10(e)和(f)可以看出,ISSA和SSA的路径有较大差

异,这表明SSA可能陷入了局部最优解,并且跳出局部最

优解的能力不佳。
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图10 路径规划图

Fig.10 Path
 

planning
 

diagram

  针对如上分析可以看出,ISSA的寻优能力,跳出局部

最优解的能力和稳定性较SSA有较大提升,在简单和复

杂环境下的性能都较为优越。

5 结 论

本文针对麻雀搜索算法依赖初始种群分布,易于陷入

局部最优解,以及迭代后期种群多样性减少等问题,提出

了一种多策略融合的改进麻雀搜索算法。采用Sobol序

列初始化种群,引入随机反向学习策略改进发现者位置更

新公式,引入螺旋觅食策略改进加入者位置更新公式,引
入柯西变异对可能陷入局部最优解的麻雀进行扰动。为

验证改进后的算法具有较为优异的性能,实验选取9个标

准测试函数进行性能测试,实验结果表明,改进后的算法

性能较原算法有较大提升,且和其他算法相比也展现出了

更为优异的性能。最后,将改进后的算法应用于AGV路

径规划,实验结果表明,ISSA相较于SSA,其寻优能力,跳
出局部最优解的能力和稳定性更为优异。下一步的研究

可以将ISSA应用到其他领域,如故障诊断,图像分割等。
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