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The mural image virtual restoration method based on bi-generator
generative adversarial network

Yang Zhuolin' Cao Jianfang® Zhang Yingjun' Peng Cunhe'
(1. College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. Department of Computer Science and Technology,Xinzhou Normal University, Xinzhou 034000, China)

Abstract: Aiming at the existing fresco restoration methods based on generative adversarial networks, their generated
samples lack diversity and are prone to large-scale feature loss and other problems. A virtual restoration method for
fresco images based on bi-generator generative adversarial network (BGGAN) is proposed. Firstly, sample generation
from two random directions ensures the diversity of generated samples. Secondly. for the Dilate U-Net Kares generator
model, the inflated convolutional expansion rate in the downsampling stage is improved and the pooling operation is
eliminated. Finally, the loss function is designed to combine the MSE loss with the adversarial loss, and the feature
gradient of the generated samples is constrained by A;. Restoration tests are performed on the collected mural dataset,
and the test results are compared with multiple image restoration methods. The results show that the image restoration
results obtained by the proposed algorithm have clearer details. The peak signal-to-noise ratio (PSNR) of the restored
image is improved by about 1. 12 dB on average compared to the comparison model, and the structural similarity (SSIM)
is improved by about 0. 047 on average.
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Generative adversarial networks structure
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Fig. 2 Bi-generator generative adversarial networks structure
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Fig. 3 Generative network structure
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Fig. 7 Restoration results of mural defective images by various generator models
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Table 3 Comparison of PSNR and SSIM for different generator models

DilateU-Net Kares

A iR A MSFP U-Net Dilate U-Net Kares AR S A A

Ji il PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

1 26.70 0. 740 26. 88 0.742 26.97 0. 747 29.19 0. 829

2 27.33 0. 781 26.71 0.761 28.42 0. 831 30.18 0. 858

3 27.05 0. 794 26. 17 0.729 27.21 0.793 28. 40 0.796

4 29.21 0. 907 26. 34 0.735 29.55 0. 895 30. 07 0.918

5 26.94 0.728 27. 31 0. 852 27.83 0. 881 28. 89 0. 894
DilateU-Net Kares
BGGAN-+DilateU-Net Kares
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Fig. 8 Restoration results of Dilate U-Net Kares and BGGAN-+ Dilate U-Net Kares on the same mural

image at different epochs
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Table 4 Comparison of SSIM and PSNR for image restoration at different epochs

A4 b 200 epoch 400 epoch 600 epoch 800 epoch
-1/\/ ]—\‘
o PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM
1 21. 33 0.719 22.82 0.742 26.78 0. 824 29.02 0. 815
2 21.61 0.726 26.56 0. 804 30. 37 0. 936 30. 40 0.929
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