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基于双生成器生成对抗网络的壁画图像
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摘 要:针对现有的基于生成对抗网络的壁画修复方法,其生成样本缺乏多样性,容易造成大规模特征丢失等问题。提出一

种基于双生成器生成对抗网络(BGGAN)的壁画图像虚拟修复方法。首先,从两个随机方向进行样本生成,保证了生成样本

的多样性。其次,对Dilate
 

U-Net
 

Kares生成器模型,改进下采样阶段的膨胀卷积扩张率,取消池化操作。最后,设计损失函

数,将均方误差(MSE)损失与对抗损失相结合,通过λG 约束生成样本的特征梯度。在所收集壁画数据集上进行修复测试,测
试结果与多种图像修复方法对比。结果表明,所提算法获得的图像修复结果细节更清晰。修复后图像的峰值信噪比(PSNR)
相较对比模型平均提高了约1.12

 

dB,结构相似度(SSIM)平均提高了约0.047。
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Abstract:
 

Aiming
 

at
 

the
 

existing
 

fresco
 

restoration
 

methods
 

based
 

on
 

generative
 

adversarial
 

networks,
 

their
 

generated
 

samples
 

lack
 

diversity
 

and
 

are
 

prone
 

to
 

large-scale
 

feature
 

loss
 

and
 

other
 

problems.
 

A
 

virtual
 

restoration
 

method
 

for
 

fresco
 

images
 

based
 

on
 

bi-generator
 

generative
 

adversarial
 

network
 

(BGGAN)
 

is
 

proposed.
 

Firstly,
 

sample
 

generation
 

from
 

two
 

random
 

directions
 

ensures
 

the
 

diversity
 

of
 

generated
 

samples.
 

Secondly,
 

for
 

the
 

Dilate
 

U-Net
 

Kares
 

generator
 

model,
 

the
 

inflated
 

convolutional
 

expansion
 

rate
 

in
 

the
 

downsampling
 

stage
 

is
 

improved
 

and
 

the
 

pooling
 

operation
 

is
 

eliminated.
 

Finally,
 

the
 

loss
 

function
 

is
 

designed
 

to
 

combine
 

the
 

MSE
 

loss
 

with
 

the
 

adversarial
 

loss,
 

and
 

the
 

feature
 

gradient
 

of
 

the
 

generated
 

samples
 

is
 

constrained
 

by
 

λG.
 

Restoration
 

tests
 

are
 

performed
 

on
 

the
 

collected
 

mural
 

dataset,
 

and
 

the
 

test
 

results
 

are
 

compared
 

with
 

multiple
 

image
 

restoration
 

methods.
 

The
 

results
 

show
 

that
 

the
 

image
 

restoration
 

results
 

obtained
 

by
 

the
 

proposed
 

algorithm
 

have
 

clearer
 

details.
 

The
 

peak
 

signal-to-noise
 

ratio
 

(PSNR)
 

of
 

the
 

restored
 

image
 

is
 

improved
 

by
 

about
 

1.12
 

dB
 

on
 

average
 

compared
 

to
 

the
 

comparison
 

model,
 

and
 

the
 

structural
 

similarity
 

(SSIM)
 

is
 

improved
 

by
 

about
 

0.047
 

on
 

average.
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0 引 言

壁画是一门古老而又常新的艺术,但由于年代久远,

很多壁画都受到如裂纹,脱落,褪色,霉变等不同程度的破

损[1]。壁画修复技术最初的修复方法修复过程耗时、费
力、需求高精确度的手工技巧,容易对壁画造成二次伤
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害[2]。近年来,随着信息技术和数字图像处理的快速发

展,壁画虚拟修复技术迎来了蓬勃发展的机遇。
图像虚拟修复方法包括传统方法与基于深度学习的

方法。传统图像虚拟修复技术通常计算速度较快,对于较

小规模的图像修复任务,处理速度可以得到保证。李丽

等[3]使用偏微分方程(PDF)对图像进行降噪修复,运用小

波数值方法降低偏微分方程组规模,有效减少了壁画图像

中的噪声点。刘义成[4]针对云南壁画特点,在criminisi算

法的基础上进行改进,提升了壁画修复效果。焦丽娟等[5]

针对criminisi算法在进行壁画图像修复时易出现错误填

充的问题,提出优先修复信息丰富块区域的概念,平滑了

修复区域边界。但传统方法需要大量的样本数据,难以进

行高度受损的图像或复杂背景图片的修复,而基于深度学

习的图像修复方法利用深度神经网络,学习图像的统计规

律,通过预测和重建缺失或损坏的图像区域来进行图像修

复。Pathak等[6]在传统自编码器的基础上,提出了上下文

编码器,以周围环境为条件,生成任意图像区域。但修复

的图像存在质量下降和失真的问题。Goodfellow等[7]提

出了 生 成 对 抗 网 络 (generative
 

adversarial
 

networks,
 

GAN)模型。该模型通过生成器和鉴别器,以竞争的方式

进行联合训练。Mirza等[8]提出在传统 GAN基础上,利
用一些真实样本所包含的额外信息

 

来增强不同类别物体

的修复效果。Donahue等[9]提出双向生成对抗网络模型

(bi-directional
 

generative
 

adversarial
 

networks,BiGAN)
增加了从数据空间到特征空间的生成器(Encoder,E),从
而无监督的利用E来提取数据特征,但模型容易产生模式

崩溃且训练不稳定。高闻霈等[10]将辅助分类器生成对抗

网络(auxiliary
 

classifier
 

GAN,ACGAN)结构与具有梯度

惩罚的wasserstein生成对抗网络
 

(wasserstein
 

generative
 

adversarial
 

nets-gradient
 

penalty,WGAN-GP)损失函数优

势结合起来进行数据增强,显著提高了模型对陌生数据的

识别能力。Yang等[11]提出了多尺度的神经网络patch合

成方法,使用内容与纹理双生成网络生成图像,但由于使

用的是近似最近的邻域搜索算法,并没有捕捉到图像的语

义或全局结构。Demir等[12]将Patch
 

GAN判别器和传统

GAN的全局判别器结合起来,在保证全局一致性的同时

关注到局部的细节纹理信息。Zeng等[13]提出了一种基于

深度生成模型的金字塔上下文图像编码网络(PEN-Net),
保证了修复中图像的视觉和语义的一致性。陈永等[14]在

PEN-Net的基础上进行改进,采用自注意力机制及特征

融合编码器构建多尺度特征生成器,有效提升了对壁画图

像的修复效果。Yu等[15]提出了一种语境注意力层来从

距离较远的区域提取近似待修复区域的特征,但修复图像

通常会产生扭曲的结构或模糊的纹理。Xiangli等[16]提出

真实性生成对抗网络(realness
 

generative
 

adversarial
 

net-
work,

  

RealnessGAN)多判别器模型,将真实性分布引入

到GAN的训练中以对抗模式崩溃。Cao等[17]在双判别

器的基础上引入扩张卷积增加卷积核感受野,同时采用残

差模块,避免梯度消失问题,该算法在缺失面积大的壁画

图像中的修复效果良好。胡雅妮等[18]在壁画图像修复中

使用双判别器概念,结合 U-Net生成网络结构与跳跃连

接,提升了修复较大区域受损壁画图像的整体一致性。谢

巧雪等[19]在残差策略基础上融合了结构相似性损失对生

成对抗网络进行约束,在视网膜 OCT图像去噪方面取得

较大成果。张双等[20]提出改进的双阶段生成对抗网络用

于壁画修复,设计特征优化融合策略与残差模块,有效缓

解了修复结果产生的伪影现象。
针对现有的修复方法存在生成样本质量不高,缺乏多

样性,修复结果容易产生模糊与伪影的问题,本文提出双

生成器的生成对抗网络模型(bi-generator
 

generative
 

ad-
versarial

 

network,BGGAN),结合技术创新和艺术保护的

需求,提高修复效果和效率。

1 基于双生成器生成对抗网络的壁画图像虚拟

修复算法

1.1 GAN模型

GAN是一种无监督学习方法,由两个相互竞争的神

经网络生成器(generator,G)和判别器(discriminator,D)
组成,结构如图1所示。生成器输入的是随机噪声Z(在
图像修复过程中输入的是受损图像),在生成器G中经过

一系列的神经网络层来生成样本,目标是生成尽可能真实

的样本,判别器以生成器生成样本和原始图像作为输入,
目标是区分真实样本与生成样本,通过一系列的神经网络

层对生成样本进行二分类判别,判断生成样本为真或假,
然后通过损失函数来循环训练生成器与判别器,更新其中

的参数,最终得到理想的生成图像。

图1 生成对抗网络结构

Fig.1 Generative
 

adversarial
 

networks
 

structure

生成对抗网络总损失函数如式(1)所示,其中,D(x)
为判别器对真实样本x 的输出,G(z)为生成器的生成样

本,D(G(z))为判别器对生成样本G(z)的输出,Pdata(x)
为真实数据分布函数,Pz(x)为噪声数据分布函数。其中

生成器的目标是为了让判别器判断生成样本为真,因而生

成器目标函数如式(2)所示,是在固定判别器的基础上进

行推导得出。判别器的目标为做出尽可能正确的判断,因
而判别器损失函数如式(3)所示,同样需要固定生成器。
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min
G
max

D
V(D,G)=Ex~Pdata(x)

[log2(D(x))]+

Ez~Pz(z)log2(1-D(G(z)))  (1)

min
G
Ez~Pz(z)log2(1-D(G(z)))  (2)

max
D

Ex~Pdata(x)
[log2D(x)]+

Ez~Pz(z)log2(1-D(G(z)))  (3)

1.2 BGGAN模型
为增加生成样本的多样性,缩短训练时间,解决壁画

图像大规模破损区域修复时易产生的模糊、伪影等问题,
本文提出BGGAN 模型用于壁画图像修复,BGGAN 以

GAN为基础,在其生成器模型与损失函数的基础上进行

改进:增加生成器模型数量;用改进的Dilate
 

U-Net
 

Kares
生成器模型替换原始U-Net生成器模型;损失函数选择均

方误差(MSE)损失函数与对抗损失函数相结合。该模型

在进行样本生成时,能够有效提高生成样本的多样性,防
止梯度崩溃[21]。

BGGAN模型结构如图2所示。其中,Z 为被随机掩

码遮挡的图像,G1(z)、G2(z)分别为两个生成器G1 和G2

的生成样本,D 为判别器模型。首先,输入带有随机大规

模掩膜的壁画图像Z,经过双生成器 G1、G2 分别产生

G1(x)和G2(x)两个生成样本。之后,将
 

生成样本分别与

原图送入判别器D,产生整体评估分数判断生成样本真/
假,将结果反馈回生成器与判别器,并根据 MSE损失函数

和对抗损失函数,对双生成器和判别器模型中参数进行循

环更新,同时通过约束项λG 引导G1(z)和G2(z)向训练样

本进行收缩。最后,将两个生成样本进行融合,从而完成

模型训练。

图2 双生成器生成对抗网络结构

Fig.2 Bi-generator
 

generative
 

adversarial
 

networks
 

structure

  1)生成器网络结构

面对背景与特征都较为复杂,且特征关联性较强的壁

画图像,特征提取较为困难,而 U-Net网络由于跳跃连接

对于多尺度,远距离的特征的提取效果较佳。因而,本文

生成器模型选择在Dilated
 

U-Net
 

Keras模型基础上进行

改进:下采样过程中的膨胀卷积部分,使用扩张率逐渐增

大的膨胀卷积(dilation=2,4,8,16)代替之前的固定为3
的膨胀卷积;在进行下采样时,使用卷积核为3,步幅为2
的卷积替换最大池化层减少特征丢失。

调整壁画图片为128×128大小的图像,随机生成

24~48
 

pixels的矩形缺失区域并标记为1,其余位置为0,
将原始壁画图像的每个像素与对应掩膜的像素进行按元

素的加法,从而使掩膜与原始壁画图像融合,生成随机缺

损壁画图像。在生成器中,首先,生成网络输入128×128
的缺损壁画图像,膨胀卷积与进行特征提取的3×3卷积

并行操作,通过将并行结果进行跳跃连接融合来保证在特

征提取的过程中兼顾整体相关联性。然后,用步长为2的

3×3卷积代替最大池化操作进行下采样,避免因池化操

作造成的特征丢失现象,上述操作循环4次完成下采样,
过程中使用的膨胀卷积扩张率分别为2、4、8、16。其次,
使用步长为2的2×2卷积进行上采样操作,以此收集更

细节的局部信息,并将每一层上采样的结果与下采样中跳

跃连接后的结果整合起来再次进行跳跃连接。最终通过

3×3的卷积操作恢复到原来的通道数。
在进行的每个卷积操作后,通过一个BN层来抑制梯

度消失问题,除最后一层卷积操作使用Tanh作为激活函

数外,其余BN层后的激活函数均使用ReLU激活函数。
改进的Dilated

 

U-Net
 

Keras网络结构如图3所示。

2)判别器网络结构

本文在判别器上选择全局与局部相结合的双判别器

模型,将原始图片x 与一个修复图片放入全局判别器,逐
步经过卷积与全连接操作,生成一个全局评估分数。缺损

原始区域与生成样本的修复区域放入局部判别器,生成一

个局部评估分数。以此对修复图像的局部相似以及整体

一致性做出判断,从而进行反馈调整。双判别器中全局判

别器比局部判别器多一层卷积层,其余均相同。所有卷积
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图3 生成器网络结构

Fig.3 Generative
 

network
 

structure

均使用步长为2的5×5大小的卷积核。除全局与局部判

别器最后一层全连接层外,其余卷积层均通过一个BN层

来抑制梯度消失问题,激活函数均使用ReLU激活函数。
判别器网络模型如图4所示,可以看到生成器G1 的

生成样本与原始图片输入双判别器后,全局判别器与局部

    

判别器生成全局与局部评估分数的过程。生成器G2 通过

判别器进行训练的过程与其相同,但两个生成器是分别进

行训练的。在每一组的训练过程中通过约束项约束两个

生成器生成样本的梯度,从而在特征方向上更好的调整两

个生成器的生成结果。

图4 判别器网络结构

Fig.4 Discriminant
 

network
 

structure

  3)损失函数设计

本文损失函数使用 MSE损失函数与对抗损失函数相

结合。通过 MSE损失保持图像的结构信息,通过对抗损

失提高生成图像的真实性。首先,设置前80个epoch作

为预训练,在预训练阶段,输入被遮挡图像,两个生成器分

别生成样本,MSE函数通过真实图像与生成样本对应区

域平均插值设置。MSE公式如下:

Lmse =
1
M∑

M

m=1

(Pdata(x)-Pz(x))2 (4)

式中:M 为训练壁画图像数据集;Pdata(x)为输入的壁画

图像;Pz(x)壁画图像经过生成器后的生成样本。
预训练阶段之后,使用 MSE损失函数与对抗损失函
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数结合循环训练生成器与判别器,对抗损失函数包括真实

样本损失和生成样本损失,公式如下:

Lradv = -
1
M∑

M

i=1
∑
2

j=1

(yilog2ri,j +

(1-yi)log2(1-ri,j)) (5)

Lfadv = -
1
M∑

M

i=1
∑
2

j=1

(yilog2fi,j +

(1-yi)log2(1-fi,j)) (6)
式中:Lradv 与Lfadv 分别为真实样本与生成样本的对抗损

失;yi 为训练样本的真实标签;ri,j 为模型判断样本属于

真实样本的概率;fi,j 为模型判断样本属于生成样本的概

率(j=1,2,分别代表两个生成器)。
因此,本文双判别器中一个的损失函数为:

Ljd = (Lradv +Lfadv)×α (7)
式中:Lj 为第j个生成器生成样本在判别器的损失函数,

α为一个超参数,用于调节损失的比例。
因为最终的修复目标唯一,从而通过λG 约束项对两

个生成器生成样本进行约束,在保证生成样本多样性的同

时,提高修复质量,并且加快训练速度。公式如下:

Lb =λG‖G1(z)+G2(z)‖ (8)
式中:G1(z)、G2(z)分别为两个生成器的生成样本。

由于本文使用的是BGGAN模型,结合双判别器模

型,所以本文联合损失函数为:

L=
1
2∑

2

j=1

(λ1Ljmse+λ2Ljgd +λ3Ljld)+Lb (9)

式中:Ljmse 为第j个生成器生成样本的 MSE损失;Lgd 为

全局判别网络的损失函数;Lld 为局部判别网络的损失函

数;λi 为相应的权重(i=1,2,3)

2 实验对比与结果分析

2.1 实验环境与数据集
为了验证本文双生成器网络模型在对大规模破损壁

画图像修复的 效 果,本 文 所 有 实 验 在 配 备 为 NVIDIA
 

GTX
 

1650的 Win11(64)平台上,基于Anaconda以及Py-
Charm的开发环境,运用Python3.8编程语言,结合深度

学习开源框架Tensorflow-GPU
 

1.15.5上进行,实验使用

Adam优化算法,Batch-size为16,Learning
 

rate为0.002。
本文数据集收集了650张五台山壁画图像与230张

敦煌壁画,并通过图像随机旋转、裁剪、镜像翻转、对比度

等数据增强算法对数据集扩充至10
 

560幅图片,其中随

机取5%图像作为测试集,其余作为训练集用于训练模

型,并在之后的实验中使用的训练与测试图像集不会

改变。

2.2 本文模型对比实验分析
为验证本文算法、BGGAN模型以及本文改进的Di-

late
 

U-Net
 

Kares生成器网络模型的优越性,设计4组对

比试验,其中第1、第2组实验为本文模型与所选文献模型

的对比实验,第3、第4组实验为针对本文模型的消融实

验。实验分别选择中心固定掩码与不规则掩码,λG 约束

项均设置为0.1。
第1组将本文算法与文献[11,13,18]进行对比,通过

设置中心固定,大小为28×28的掩码,对5幅破损壁画图

像修复结果进行对比分析。第2组模拟真实壁画图像破

损情况,通过设置5组不规则掩码,与第1组实验的对比

模型相同,进行实验分析。第3组针对生成器模型,在
BGGAN模型基础上,选择 MSFP、U-Net、Dilate

 

U-Net
 

Kares与本文模型进行比较。第4组针对BGGAN模型

在训练速度,训练效果上的提升,设置中心固定,大小为

34×34的掩码,通过对比Dilate
 

U-Net
 

Kares和BGGAN+
 

Dilate
 

U-Net
 

Kares训练结果。客观评价指标均采用峰值

信噪比(peak
 

signal-to
 

noise
 

ratio,PSNR)与结构相似性

(structural
 

similarity,SSIM)两种评价指标进行对比分

析,在数据上体现本文模型的优越性。

1)算法实验对比分析

为了验证本文算法对于大规模破损区域壁画图像的

修复效果,在数据集中选取5幅壁画图像进行测试,添加

中心固定,大小为28×28的掩码进行修复实验,实验结果

如图5所示。从修复结果可以看出,文献[11]使用内容与

纹理双生成网络生成图像,但由于使用的是近似最近的邻

域搜索算法,难以捕捉到全局的语义信息,文献[11]对图

像3的修复结果可以明显看出颜色产生了偏差,并且存在

细节模 糊 的 问 题。文 献[13]在 U-Net基 础 上 构 建 了

PEN-Net,通过对全分辨率输入的上下文语义进行编码,
在边界效果上修复结果较好,但从图像2与图像5的修复

结果不难看出,修复区域还是出现了伪影、线条修复模糊

的现象。文献[18]通过双判别器结合 U-Net生成网络结

构与跳跃连接,提升了修复较大区域受损壁画图像的整体

一致性,但观察文献[18]对图像5的修复可以看到当图片

待修复区域线条较复杂时,仍会出现修复结果模糊的问

题。与对比算法相比,本文算法在面对大规模破损区域

时,修复结果在特征一致性,纹理细节,以及结构的整体性

都有很好的效果,能基本还原出原始壁画图像,避免出现

模糊、伪影的情况。算法的客观评价指标对比结果如表1
所示,从而客观验证了本文算法在对大规模破损壁画进行

修复的优越性。

2)模拟真实破损情况实验分析

为验证本文算法在面对真实破损壁画图像时的修复

能力,通过观察真实破损壁画情况,在本文壁画数据集中

人为设置5组非矩形掩码模拟真实壁画破损,并对修复结

果进行对比分析。实验结果如图6所示。
从修复结果可以看出,当掩码设置偏向不规则时,图

像修复算法在整合大区域特征时容易将其进行泛化,从而

影响对破损区域的修复,如文献[13]对图像1和文献[11]
对图像4的修复。同时,原本在面对规则掩码时对破损边

缘修复较为流畅的文献[18]算法,当面对不规则掩码时,
破损区域边缘感更加明显(图像4和3)。而本文算法在破
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图5 各算法对中心固定掩码缺损壁画图像的修复结果

Fig.5 Restoration
 

results
 

of
 

mural
 

defect
 

images
 

by
 

various
 

algorithms

表1 不同算法PSNR和SSIM对比

Table
 

1 Comparison
 

of
 

PSNR
 

and
 

SSIM
 

for
 

different
 

algorithms

原始壁画

图像

文献[11]算法 文献[13]算法 文献[18]算法 本文算法

PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM
1 29.64 0.864 30.47 0.891 29.52 0.838 31.49 0.945
2 30.40 0.873 30.45 0.879 30.67 0.884 31.11 0.938
3 30.55 0.858 30.23 0.822 30.30 0.908 30.64 0.916
4 28.35 0.821 29.19 0.838 30.25 0.910 31.15 0.940
5 27.32 0.766 28.34 0.836 29.26 0.897 31.24 0.936

损边缘部分仍然能够达到很好的衔接,并且不会影响到修

复图像的质量,同时在主观视觉上优于其他对比算法。表

2为本文算法与对比算法在不规则掩码实验中的PSNR
与SSIM对比结果,可以较为直观地看出,本文算法的修

复结果在PSNR与SSIM上均高于对比算法。

3)生成器模型实验对比分析

为验证改进的Dilate
 

U-Net
 

Kares生成器模型在BG-
GAN模型中的优越性,设计对比试验,分别选择 MSFP、

U-Net、Dilate
 

U-Net
 

Kares与改进的Dilate
 

U-Net
 

Kares
生成器模型进行壁画修复对比试验,掩码选择50×50大

小,实验结果如图7所示。
从修复结果可以看出,MSFP在特征较为简单的壁画

图片中修复结果较好,但当特征变复杂时,出现了明显的

线条丢失的现象。传统 U-Net模型由于缺乏引导远距离

特征的膨胀卷积,容易出现大规模特征丢失现象,从而造

成修复结果模糊,出现了伪影。原始Dilate
 

U-Net
 

Kares
修复结果较为良好,但在待修复区域特征较为复杂时,仍
会出现小区域的线条模糊现象。与其他模型相比,本文改

进的DilateU-Net
 

Kares生成器网络模型的修复结果结构

较为完善,线条清晰,在面对大规模破损区域时,仍能表现
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图6 各算法对随机缺损壁画图像的修复结果

Fig.6 Restoration
 

results
 

of
 

various
 

algorithms
 

for
 

randomly
 

damaged
 

mural
 

images

表2 不同算法PSNR和SSIM对比

Table
 

2 Comparison
 

of
 

PSNR
 

and
 

SSIM
 

for
 

different
 

algorithms

原始壁画

图像

文献[11]算法 文献[13]算法 文献[18]算法 本文算法

PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

1 29.84 0.906 29.51 0.895 30.77 0.914 31.56 0.927

2 29.33 0.891 30.13 0.916 30.10 0.916 30.82 0.924

3 28.59 0.877 28.17 0.826 30.12 0.904 30.21 0.936

4 29.09 0.872 30.65 0.912 30.35 0.903 30.94 0.933

5 29.38 0.889 28.68 0.824 29.63 0.901 29.83 0.909

出较其他模型更好的修复能力。算法的客观评价指标对

比结果如表3所示。

4)针对BGGAN模型的实验对比分析

在保证其他条件基本相同的情况下,损失函数使用

MSE与对抗损失相结合,判别器均使用本文双判别器模

型,对比 Dilate
 

U-Net
 

Kares生成器模型与 BGGAN 模

型,分别在200、400、600、800
 

epoch下对壁画图像的修复

效果,修复结果如图8所示,其对应SSIM 与PSNR数据

分别如表4所示。

从实验结果可以看出,本文BGGAN+Dilate
 

U-Net
 

Kares模型在400
 

epoch时就表现出明显的修复优势,在
600

 

epoch时就已经训练完毕,而缺乏BGGAN模型,在
800

 

epoch左右训练完毕,因而本文BGGAN模型可以极

大的减小训练时间。并且在修复结果上,对比原始壁画图

像,本文模型线条清晰,除部分地方有细微伪影,颜色修复

不准确外,与原始壁画图像达到了极高的相似性,缺乏了

BGGAN模型,在修复结果上仍能观察到大范围的模糊,
与原始壁画背景不匹配的问题。
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图7 各生成器模型壁画缺损图像修复结果

Fig.7 Restoration
 

results
 

of
 

mural
 

defective
 

images
 

by
 

various
 

generator
 

models

表3 不同生成器模型PSNR和SSIM对比

Table
 

3 Comparison
 

of
 

PSNR
 

and
 

SSIM
 

for
 

different
 

generator
 

models

生成器

模型

MSFP U-Net Dilate
 

U-Net
 

Kares 本文模型

PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM
1 26.70 0.740 26.88 0.742 26.97 0.747 29.19 0.829
2 27.33 0.781 26.71 0.761 28.42 0.831 30.18 0.858
3 27.05 0.794 26.17 0.729 27.21 0.793 28.40 0.796
4 29.21 0.907 26.34 0.735 29.55 0.895 30.07 0.918
5 26.94 0.728 27.31 0.852 27.83 0.881 28.89 0.894

图8 Dilate
 

U-Net
 

Kares与BGGAN+Dilate
 

U-Net
 

Kares在不同epoch下对同一壁画图像的修复结果

Fig.8 Restoration
 

results
 

of
 

Dilate
 

U-Net
 

Kares
 

and
 

BGGAN+Dilate
 

U-Net
 

Kares
 

on
 

the
 

same
 

mural
 

image
 

at
 

different
 

epochs
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表4 不同epoch阶段修复图像SSIM与PSNR对比

Table
 

4 Comparison
 

of
 

SSIM
 

and
 

PSNR
 

for
 

image
 

restoration
 

at
 

different
 

epochs

评价指标
200

 

epoch 400
 

epoch 600
 

epoch 800
 

epoch
PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

1 21.33 0.719 22.82 0.742 26.78 0.824 29.02 0.815
2 21.61 0.726 26.56 0.804 30.37 0.936 30.40 0.929

3 结 论

本文提出了一种双生成器生成对抗网络的网络模型

用于大规模破损壁画图像修复,生成器模型均使用改进的

Dilate
 

U-Net
 

Kares特征提取网络模块,重点在于解决

GAN中生成样本缺乏多样性,训练速度较慢,在进行大规

模破损壁画图像修复时修复结果模糊,细节不清晰的问

题。在GAN中增加生成器模型的数量,使用改进Dilate
 

U-Net
 

Kares生成器模型,通过逐步增加膨胀卷积扩张率

来减小远距离特征丢失,取消池化操作来减小特征提取时

造成的大规模特征丢失。将所提算法与其他提取图片特

征较好算法进行比较,实验结果表明,本文模型在大规模

破损壁画图像修复结果中,特征一致性更强,纹理细节更

清晰,结构的整体性也更完整,客观评价指标(PSNR、

SSIM)相比于对比算法也都有所提高。但本文所提方法

在面对大规模破损壁画时,修复结果仍会出现部分特征丢

失,修复背景与原始图片存在差异的情况。针对这些问

题,后续研究将进一步提高模型在复杂场景条件下的特征

提取能力,并尝试使用不同的鉴别器网络模型,进一步优

化本文算法。
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