Abstract:To improve the adaptability to vibrancy and impact condition on the vehicle platform, a fast steering mirror (FSM) with the center and outer doubleaxis flexure hinges is designed. Based on the basis of application requirements of the vehicle tracklaunch system, the lightweight mirror, actuators, sensors for angle and flexure hinges of FSM are designed and selected, respectively. The eddy current sensors with four channels, which measurement noise is suppressed by using difference data of two channels, are used to improve measurement accuracy of FSM. Mode and stiffness of the combined hinges with center and outer flexure hinges are analyzed by the finite element method and two flexure hinges are designed optimally, which are beneficial to improve the control bandwidth of FSM system. Finally, the pointing precision, control bandwidth and step response time of FSM are tested respectively after fine manufacturing and assembling. Experimental results show that the pointing error of the FSM is less than 1″, the control bandwidth is more than 200 Hz, and the step response time is about 10 ms. Hence, the designed FSM with two doubleaxis flexure hinges can meet the application requirements of vehicle tracklaunch system.