基于TL-LSTM的轴承故障声发射信号识别研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3TP18

基金项目:

国家自然科学基金(51675350)项目资助


Research on acoustic emission signal recognition of bearing fault based on TL-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多工况下滚动轴承故障声发射信号智能识别问题,提出了一种长短时记忆网络(LSTM)与迁移学习(TL)相结合的故障识别新方法。该方法仅以单一工况下原始声发射信号参数作为训练样本,构建LSTM模型充分挖掘出声发射信号与故障之间的深层次映射关系,以识别与训练工况具有相近分布特征的其他工况下故障;引入并结合TL来应对相异分布特征的其它工况下故障识别问题,从而可完成多种类型工况下故障特征的自适应提取与智能识别。实验结果表明,对于转速、采集位置或滚动轴承型号工况改变时内圈、外圈及保持架故障的识别均具有较高的准确率,可端对端的实现多种类型工况下故障的实时在线智能监测任务,摆脱了对先验故障数据的过分依赖,验证了该方法的可行性与优越性。

    Abstract:

    Aiming at the issue of fault acoustic emission (AE) signal intelligent recognition of rolling bearing under multiple working conditions, a new fault recognition method combining long shortterm memory (LSTM) networks and transfer learning (TL) is proposed. This method only takes the original AE signal parameters under single working condition as the training samples and constructs LSTM model to fully excavate the deep mapping relationship between AE signals and faults, so as to identify the faults under other working conditions that have similar distribution characteristics with the training working condition. TL is introduced and combined with the LSTM model to deal with the fault identification problem under other working conditions that have different distribution characteristics. Thus, the adaptive extraction and intelligent recognition of the fault features under various types of working conditions can be completed. The experiment results show that the recognition of inner ring, outer ring and cage faults have high accuracy under the working condition changes of the rotation speed, acquisition position and type of the rolling bearing. The realtime online intelligent monitoring task of the faults can be completed endtoend under various types of working conditions. The proposed method gets rid of the overreliance on prior fault data, and the feasibility and superiority of the proposed method are verified.

    参考文献
    相似文献
    引证文献
引用本文

于洋,何明,刘博,陈长征.基于TL-LSTM的轴承故障声发射信号识别研究[J].仪器仪表学报,2019,40(5):51-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码