基于CEEMDAN-SQI-SVD的齿轮箱局部故障特征提取
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3TH132

基金项目:

国家自然科学基金 (61463021)、江西省青年科学家培养对象计划(20144BCB23037)、江西省自然科学基金(20181BAB202020)项目资助


Feature extraction method for gearbox local fault based on CEEMDAN-SQI-SVD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    经验模态分解(EMD)及以其为基础发展而来的方法在故障诊断领域中得到广泛应用, 对于分解后固有模态函数(IMF)的有效选择及基于有效IMF故障特征的准确提取至关重要。为更高效地解决此类问题, 提出一种基于具有自适应白噪声的完整集成经验模态分解(CEEMDAN)结合信号质量指数(SQI)算法与奇异值分解(SVD)的齿轮箱局部故障最优特征提取算法。以具有不同故障级别的齿轮局部裂纹进行试验验证方法的有效性,通过试验获取原始数据并进行CEEMDAN分解, 利用SQI进行有效IMF选取, 再结合SVD对有效IMF进行分解以获取最优特征向量, 并输入至BP神经网络进行训练与测试, 最后将测试结果与数种常规方法进行比较。结果表明, 针对齿轮箱的局部故障, 提出的CEEMDANSQISVD算法识别精度高, 并优于数种常规方法。

    Abstract:

    Empirical Modal Decomposition (EMD) and the methods based on EMD have been widely used in the field of fault diagnosis. The selection of Intrinsic Mode Function (IMF) after decomposition is important for accurate extraction of fault features. To solve such problem more effectively, the gearbox local fault optimal feature extraction algorithm based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) combined with Signal Quality Index (SQI) algorithm and Singular Value Decomposition (SVD) is proposed in this study. The method is evaluated by experiments on local crack of gear with different fault levels. Firstly, the original data are obtained by experiment. Then, they are decomposed by CEEMDAN. The effective IMF is decomposed by SVD to obtain the optimal feature vector, which is the input of BP neural network for training and test. Finally, the test results are compared with several common methods. Experimental results show that the proposed CEEMDANSQISVD algorithm has high recognition accuracy and is better than several conventional methods for local fault of gearbox.

    参考文献
    相似文献
    引证文献
引用本文

古莹奎,曾磊,张敏,李文飞.基于CEEMDAN-SQI-SVD的齿轮箱局部故障特征提取[J].仪器仪表学报,2019,40(5):78-88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码