分布式星敏感器下空间目标同步关联方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V443+.5TP391.4

基金项目:


Space target synchronization association method under distributed star sensor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将分布式星敏感器作为空间目标的监视平台,需要将多星敏感器拍摄星图中的空间目标即时关联。星图中的空间目标为没有纹理、颜色等特征的弱小目标,无法利用经典目标关联算法解决。以对极几何约束为关联依据,提出一种分布式星敏感器下空间目标同步关联方法。对极几何约束能够描述多视图的内在射影关系,广泛应用于图像匹配和拼接问题,将其应用于目标关联领域。基于实测数据,进行300组星图的关联实验,统计出空间目标关联概率达90%,验证了算法的可行性,给出了关联门限的合理参考值并分析了造成关联错误的多种原因,基于蒙特卡洛法估算误判最大概率。实验证明本文方法在星敏感器工作中的抖动、测量偏差及少量干扰点的影响下有较理想的关联效果。

    Abstract:

    The distributed star sensor can be used as a monitoring platform for space targets. Multiple star sensors are needed to be associated instantly in the star map. The space target in the star map is a small target with no features (e.g., texture and color), which cannot be solved by the classical target association algorithm. Based on the correlation of polar geometry constraints, a space target synchronization association method under the distributed star sensor is proposed. The epipolar geometry constraint can describe the intrinsic projective relationship of multiviews, which has been widely used in image matching and stitching problems. It is applied in the target association field in this study. Based on the measured data, the association experiments of 300 star maps are carried out. The space target association probability can reach 90% and the feasibility of the algorithm is verified. The reasonable reference value of the associated threshold is proposed and various causes of the association error are analyzed. Monte Carlo is adopted to estimate the maximum probability of misjudgment. Experimental results show that the proposed method has an ideal association effect under the influence of jitter, measurement deviation and several interference points in the operation of the star sensor.

    参考文献
    相似文献
    引证文献
引用本文

黄秋实,张雅声,冯飞.分布式星敏感器下空间目标同步关联方法[J].仪器仪表学报,2019,40(7):106-113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-17
  • 出版日期:
文章二维码