无标签数据下基于特征知识迁移的机械设备智能故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH878TG115.28

基金项目:

国家自然科学基金(51905452)、中央高校基本科研专项(2682017ZDPY09,2682019CX35,2018GF02)资助


Feature knowledge transfer based intelligent fault diagnosis method of machines with unlabeled data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于智能故障诊断方法,大量有标签数据是实现智能模型训练的必要条件,但该条件在部分工业应用场景下难以满足。难以采集足够有标签数据,尤其是故障状态下的数据,在一定程度上限制了智能故障诊断方法的工业化应用。为解决该问题,提出基于特征知识迁移的机械设备智能故障诊断方法,将实验设备或其他相关设备所采集的足量有标签数据所蕴含的特征知识迁移至工业现场设备所部署的智能模型中,完成不同机械设备之间监测数据的特征知识迁移,从而实现无标签数据下的机械设备智能故障诊断。提出方法首先构建一维深度卷积神经网络,实现从原始振动信号到机械设备故障类别的深度映射。然后在深度卷积神经网络中加入领域适配正则约束项,实现不同机械设备监测数据间特征知识的深度迁移适配。最后,通过全连接神经网络进行机械设备健康状态的识别。为验证提出算法的有效性,通过两种机械设备的轴承在不同性能状态下所采集的监测数据进行迁移故障诊断实验,实验结果表明:提出方法实现了不同设备间监测数据特征知识的迁移适配;相对于传统智能诊断方法,提出的方法在两个数据集之间的迁移故障诊断识别率提高20%以上。

    Abstract:

    A large amount of labeled data is a necessary condition for model training of intelligent fault diagnosis methods. However, this condition is difficult to be met in some industrial application scenarios. It is difficult to collect enough labeled data, especially in the fault state. This limits the industrial application of the intelligent fault diagnosis method. To solve this problem, an intelligent fault diagnosis method for mechanical equipment based on feature knowledge transfer is proposed. The characteristic knowledge contained in the sufficient amount of labeled data collected by the experimental equipment or other related equipment is transferred to the intelligent model deployed by an industrial field device. The feature knowledge transfer of monitoring data between different mechanical devices is completed. In this way, the intelligent fault diagnosis of mechanical equipment under unlabeled data can be achieved. First, the proposed method constructs the onedimensional deep convolutional neural network to realize the depth mapping from the raw vibration signal to the mechanical equipment fault category. Then, the domain adaptation constraint is added to the deep convolutional neural network to realize the deep transfer adaptation of the feature knowledge between different mechanical equipment monitoring data. Finally, the health status of the mechanical equipment is identified by a fully connected neural network. To evaluate the effectiveness of the proposed method, the transfer fault diagnosis experiment is implemented by the monitoring data collected from the bearings of the two mechanical devices under different performance conditions. Experimental results show that the proposed method realizes the transfer and adaptation of the monitoring data feature knowledge between different devices. Compared with the traditional intelligent diagnosis method, the proposed method improves the recognition rate of migration fault diagnosis between two data sets more than 20%.

    参考文献
    相似文献
    引证文献
引用本文

郭亮,董勋,高宏力,李长根.无标签数据下基于特征知识迁移的机械设备智能故障诊断[J].仪器仪表学报,2019,40(8):58-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码