Abstract:The hind wings of some twowinged insects, such as houseflies, utilize the stickshaped mechanosensory halteres, which detect Coriolis forces to achieve rapid course control during aerial maneuvers. In this paper, a kinematic model of stickshaped mechanosensory halteres navigation is proposed based on the structure of the bionic wing of the houseflies. Maneuvers navigation principle of this model is analyzed by MATLAB. The mechanosensory halteres of houseflies and the electromechanical coupling effect of resonant tunneling membrane structure (RTS) are combined. In this way, a novel bionic microstickshaped navigation sensor (BMSSNS) is designed. The processing technology, signal detection method and path solving method of BMSSNS are studied simultaneously. The structure of BMSSNS is simulated by ANSYS. Simulation results show that the motion path can be calculated by integrating the Coriolis and the driving force information of the stickshaped structure under the initial boundary conditions. The further path experiment results show that the BMSSNS can effectively detect the path and posture information (e.g., pitch, roll and yaw). Its horizontal and vertical path positioning accuracy can reach 15 mm and 05 mm in short time. The sensor enables precise path location in occasions where small spaces and high positioning accuracy are required.