混合整体趋势扩散的虚拟样本构建及其血液光谱分析应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH741 O657.33

基金项目:

国家自然科学基金(11404054)、河北省自然科学基金(F2016501138)项目资助


Virtual sample establishment of HybridMTD and its application in blood spectrum analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确的预测模型在光谱定量分析中起着非常重要的作用。针对小样本集空间信息匮乏、信息分布不均衡所造成的模型预测误差偏大的问题,基于传统多分布整体趋势扩散(MDMTD)方法提出混合整体趋势扩散技术(HybridMTD)构建虚拟样本空间,进一步扩充训练样本集,改善样本集空间的信息分布,从而显著降低模型的预测误差。分别利用全血样本的总胆固醇和甘油三酯光谱数据集进行对比实验验证。实验结果表明,基于添加虚拟样本后重构的数据集建立的偏最小二乘预测模型能够获得更低的平均预测均方差(MRmesp)。总胆固醇和甘油三酯的MRmesp分别为041和045 mmol/L。对比MDMTD方法,误差分别降低了467%和224%。可见,所提出的HybridMTD方法能够构建数量适宜的高质量的虚拟样本。填充后的样本集所对应的预测模型显著降低了预测误差,与现有的MTD方法相比具有更加优越的预测性能。混合整体趋势扩散技术在在血液光谱分析的应用有效提升了评估生理指标的质量,加快心血管疾病的筛查速度并降低其风险。

    Abstract:

    An accurate prediction model plays a very important role in the quantitative spectrum analysis. Aiming at the problem of large model prediction error caused by information lacking and imbalanced information distribution in small sample set space, in this paper, based on traditional MDMTD (multidistribution mega trend diffusion) method, a HybridMega Trend Diffusion (HybridMTD) technique is proposed to construct virtual sample space, which further expends the training sample set and improves the information distribution of the sample set space, and then obviously reduces model prediction error. The spectrum data sets of total cholesterol and triglyceride in whole blood samples were utilized to carry out comparison and experiment verification. The experiment results show that the PLS prediction models established based on the reconstructed data set with virtual samples added can provide lower mean prediction mean square error MRmesp (mean of RMSEP). The values of MRmesp of total cholesterol and triglyceride are 041 and 045 mmol/L, respectively. Compared with traditional MDMTD method, the errors are reduced by 467% and 224%, respectively. The proposed HybridMTD method can construct an adequate number of highquality virtual samples; the prediction model corresponding to the sample set with the virtual samples filled obviously reduces the prediction error, and has superior prediction performance compared with the existing MTD method. The application of HybridMTD technique in blood spectrum analysis effectively enhances the evaluation quality of physiological indicators, speeds up screening speed for cardiovascular disease and reduces its risk.

    参考文献
    相似文献
    引证文献
引用本文

高克铉,李志刚,徐长明,王巧云,李博.混合整体趋势扩散的虚拟样本构建及其血液光谱分析应用[J].仪器仪表学报,2019,40(8):167-175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码