基于数据融合的小波变换漏磁异常边缘检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH878

基金项目:

国家自然科学基金(F011403)资助


Magnetic flux leakage anomaly edge detection based on data fusion and wavelet transformation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    漏磁内检测是目前管道无损检测的重要手段。在进行漏磁无损检测评估中,异常边缘检测是十分重要的环节,异常边缘的精确程度直接影响到后续的反演评估环节。由于数据噪声的存在,使得边缘检测精度大大下降,特别是复杂异常区域。同时,面对庞大的漏磁数据,一般机器学习算法耗时较多。因此,针对漏磁内检测中异常边缘检测问题,本文提出一种基于数据融合的小波变换漏磁异常边缘检测算法。该算法基于小波多尺度变换与分解,将数据层融合、特征层融合以及决策层融合相结合。首先,原始数据经过多色彩空间变换,并将变换结果进行数据融合。然后,融合数据进行小波多尺度变换。其次,针对每一尺度下变换数据进行小波多层分解,并对每一层级进行小波模极大值边缘检测,将边缘检测结果加入到细节分解系数融合中,并重构数据。最终将多尺度下的边缘检测效果进行融合得到最终检测边缘。实验分别在仿真数据集和真实管道数据集上进行,并和其他边缘检测算法,如Sobel、Canny、Roberts、Prewitt、Log 进行了比较,实验结果显示,本文提出的异常边缘检测算法效果优于传统边缘检测算法,边缘指标OA高于70%,能够满足实际工程需要。

    Abstract:

    The inner detection of magnetic flux leakage (MFL) is an important way of nondestructive testing (NDT) in pipeline. For the nondestructive evaluation, anomaly edge detection is an important part because its accuracy directly affects the subsequent inversion process. Due to the data noise, the accuracy of edge detection is greatly reduced, especially for complex anomaly. Meanwhile, general machine learning algorithms take more time to process huge MFL data. To address these problems, an edge detection algorithm based on data fusion and wavelet transform is proposed. This algorithm is based on wavelet multiscale transformation and decomposition. The data layer fusion, feature layer fusion and decision layer fusion are combined. First, the original data are transformed by multicolor space, and the transformation results are fused together. The fused data are transformed by wavelet multiscale. Secondly, wavelet multilevel decomposition is executed for each scale data, and the wavelet modulus maximum edge detection is performed for each level. In addition, the edge detection results are combined with detail decomposition coefficient for fusion and reconstruction. Finally, the edge detection results with multiple scales are fused to obtain the final detection edge. Experiments are conducted on the simulated data and the real pipeline dataset, respectively. Results are compared with other edge detection algorithms, including Sobel, Canny, Roberts, Prewitt, and Log. Experimental results demonstrate that the proposed anomaly edge detection method has better performance than traditional edge detection methods. OA evaluation for our method exceeds 70%, which satisfies requirement of practical application.

    参考文献
    相似文献
    引证文献
引用本文

曹辉,杨理践,刘俊甫,刘斌.基于数据融合的小波变换漏磁异常边缘检测[J].仪器仪表学报,2019,40(12):71-79

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-19
  • 出版日期:
文章二维码