基于改进EMD的微机械陀螺随机误差建模方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP399TH89

基金项目:

国家自然科学基金(61863024,71761023)、甘肃省高等学校科研项目(2018C11,2018A22)、甘肃省自然基金(17JR5RA089,18JR3RA130)资助


A modeling method for random error of micromechanical gyroscope based on the improved EMD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了降低微机械(MEMS)陀螺仪的随机误差,提出一种将改进的经验模态分解法(EMD)与传统建模滤波方法相结合的新方法对随机误差进行处理。首先采用传统EMD算法将信号分解为有限个本征模态函数(IMF),并根据皮尔逊相关系数准则和噪声统计特性提出一种筛选机制,将IMF分为噪声IMFs、混叠IMFs和信号IMFs 3类;其次,对混叠IMFs进行时间序列建模,建模完成后进行卡尔曼滤波拟合;最后,将建模滤波后的混叠IMFs与信号IMFs进行重构,得到最终去噪信号。实验分析结果表明,本文方法在抑制随机误差的效果上有明显的优势,极大地改善了信号的质量,提高了惯导的解算精度。

    Abstract:

    To reduce the random error of the microelectromechanical system (MEMS) gyroscope, a new method combining the improved empirical mode decomposition (EMD) with the traditional modeling and filtering method is proposed. Firstly, the traditional EMD algorithm is used to decompose the signal into a finite number of intrinsic mode functions (IMF). Based on Pearson correlation coefficient criterion and statistics of noise, a screening mechanism is proposed to divide IMFs into three categories, including noise dominated IMFs, mixed IMFs, and signal IMFs. Then, the timeseries model of the mixed IMFs is formulated. Kalman filtering algorithm is fitted after the modeling is finished. Finally, the mixed IMFs after modeling and filtering and signal IMFs are reconstructed to obtain the denoised signal. Experimental analysis results show that the proposed method has obvious advantages in suppressing the effect of random errors, which can significantly improve the signal quality and the accuracy of the inertial navigation system.

    参考文献
    相似文献
    引证文献
引用本文

杨菊花,刘洋,陈光武,魏宗寿,邢东峰.基于改进EMD的微机械陀螺随机误差建模方法[J].仪器仪表学报,2019,40(12):196-204

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-19
  • 出版日期:
文章二维码