基于手势多特征融合及优化MulticlassSVC的手势识别*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号TH701 文献标识码A国家标准学科分类代码: 51080

基金项目:

*基金项目:基金项目“十三五”装备预研共用技术项目(41412040302)资助


Hand gesture recognition based on multifeature fusion and improved multiclassSVC
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:摘要深度相机的发展使得获取手势骨骼信息更加方便,为了从多维手势骨骼节点大数据中获取有用信息并在室内复杂环境和近距离条件下实现对常见双手静态交互动作的识别,提出一种基于多特征融合及生物启发式遗传算法优化多分类支持向量分类器(multiclassSVC)的静态手势识别方法。利用手势骨骼数据设计了新的手势特征且通过特征组合策略建立更全面的手势特征序列,削弱了冗余特征产生的影响,提高了数据处理能力;采用生物启发式遗传算法优化multiclassSVC的核函数与惩罚参数,得到最优核函数和惩罚参数,能够克服因随机选择核函数和惩罚参数导致手势识别准确度低的缺点;运用P、R、F1、A度量指标对手势识别模型进行综合评估,且通过与KNN、MLP、MLR、XGboost等模型的对比实验,验证了所提手势识别模型能有效提高手势识别准确度;通过迭代增加手势样本数据进行模型训练的方法分析了样本容量对手势识别准确度的影响,提供了一种提高手势识别准确度的有效方法。实验结果表明,手势识别准确率达到984%,识别算法的查准率、查全率和F1性能评测指标均值不低于098。

    Abstract:

    Abstract:The development of the depth camera makes it more convenient to achieve gesture skeletal information. To obtain useful information from the big data of multidimensional gesture skeletal nodes and realize the recognition of common twohanded staticinteractive actions in the complex indoor environment and close range conditions, a static gesturerecognitionmethodis proposed.Itisbasedon multifeaturefusionand multiclassification supportvector classifier(multiclassSVC). To achieve better results,multiclassSVCis optimized by the bioheuristic genetic algorithm. By using gesture skeletal data, a new gesture feature is designed and a more comprehensive gesture feature sequence is established through the feature combination strategy. In this way, the influence of redundant features is reduced and the ability of data processing is enhanced. The optimal kernel function and penalty parameters are obtained by optimizing the kernel function and penalty parameters of multiclassSVC with the bioheuristic genetic algorithm. The issue of low gesture recognition accuracy is addressed, which is caused by the random selection of the kernel function and penalty parameters. Comprehensive evaluations of the gesture recognition model are carried out by using P, R, F1 and A. Comparison experiments with KNN, MLP, MLR, XGboost and other models verify that the proposed gesture recognition model can effectively improve the accuracy of gesture recognition. This paper analyzes the influence of sample size on gesture recognition accuracy through model training by adding gesture sample data iteratively. It provides an effective method to improve gesture recognition accuracy. Experimental results show that the gesture recognition accuracy can reach 984%. And the average precision rate, recall rate and F1 performance evaluation indexes of the recognition algorithm are not lower than 098.

    参考文献
    相似文献
    引证文献
引用本文

程淑红,程彦龙,杨镇豪.基于手势多特征融合及优化MulticlassSVC的手势识别*[J].仪器仪表学报,2020,41(6):233-239

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码