融合改进 SuperPoint 网络的鲁棒单目视觉惯性 SLAM
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242 TH74

基金项目:

国家自然科学基金(61973106, U1813205)、湖南省科技计划重点研发项目( 2018GK2021)、航空科学基金( 201705W1001)、郴州市科技计划项目资助


Robust monocular visual-inertial SLAM based on the improved SuperPoint network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    单目视觉惯性 SLAM 系统通过追踪人工设计的点特征来恢复位姿,如 Shi-Tomasi,FAST 等。 然而光照或视角变化等挑 战性场景中人工特征提取鲁棒性差,易导致位姿计算精度低甚至失败。 启发于 SuperPoint 网络在特征提取的强鲁棒性,提出一 种基于改进 SuperPoint 网络的单目 VINS 系统—CNN-VINS,旨在提升挑战性环境下 VINS 系统的鲁棒性。 主要贡献包括:提出 改进 SuperPoint 特征提取网络,通过动态调整检测阈值实现图像特征点均匀检测和描述,构建鲁棒精确的特征关联信息;将改 进 SuperPoint 特征点提取网络与 VINS 系统的后端非线性优化、闭环检测模块融合,提出一个完整的单目视觉惯性 SLAM 系统; 对网络的编码层和损失函数优化调整,并验证网络编码层对 VINS 系统定位精度的影响。 在公共评测数据集 EuRoc 实验结果 表明,相比国际公认的 VINS-Mono 系统,所提系统在光照剧烈变化的挑战性场景中定位精度提升 15% ;对光照变化缓慢的简单 场景,绝对轨迹误差均值保持在 0. 067~ 0. 069 m。

    Abstract:

    Monocular visual-inertial SLAM (simultaneous localization and mapping) systems recover poses by tracking the hand-crafted point features, such as Shi-Tomas, FAST, and so on. However, the robustness of hand-crafted features is limited in some challenging scenes, such as severe illumination or perspective changes, which may lead to poor localization accuracy. Inspired by the excellent performance of SuperPoint network in feature extraction, a monocular VINS (i. e. , CNN-VINS) is proposed, which is based on the selfsupervised network and works robustly in challenging scenes. Our main contributions are summarized in three terms. An improved SuperPoint-based feature extraction network is proposed. The dynamical detection threshold adjustment algorithm is used to detect and describe feature points uniformly, which can establish accurate feature correspondence. The improved SuperPoint network is efficiently integrated into a complete monocular visual-inertial SLAM including nonlinear optimization and loop detection modules. In addition, to evaluate the performance of the feature extraction network encoder layer in terms of the localization accuracy of the VINS system, learn and optimize the intermediate shared encoder layer and loss function of the network. Experimental results on the public benchmark EuRoc dataset show that the localization accuracy of our method is increased 15% more than that of VINS-Mono in challenging scenes. In simple illumination change scenes, the mean absolute trajectory error is between 0. 067~ 0. 069 m.

    参考文献
    相似文献
    引证文献
引用本文

余洪山,郭 丰,郭林峰,王佳龙,付 强.融合改进 SuperPoint 网络的鲁棒单目视觉惯性 SLAM[J].仪器仪表学报,2021,(1):116-126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码