基于改进 Faster RCNN 的铝材表面缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH16

基金项目:

国家自然科学基金(51778104)、辽宁省渔业厅资助项目(201723)资助


Aluminum product surface defect detection method based on improved Faster RCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统检测算法对工业铝材表面缺陷识别率不高、对于小缺陷定位不准确等问题,提出改进的 Faster RCNN 深度学 习网络对于铝材表面 10 种缺陷进行检测。 首先,对数据进行增强后,在主干网络加入特征金字塔网络(FPN)结构以加强对小 缺陷的特征提取能力,随后用感兴趣区域校准(ROI Align)算法来代替粗糙的感兴趣区域池化(ROI Pooling)算法,获得更准确 的缺陷定位信息,最后加入 K-means 算法对缺陷数据进行聚类,得出更适应铝材缺陷的锚框。 实验表明,改进后的网络对铝材 表面缺陷检测的平均精度均值(mAP50)为 91. 20% ,比原始的 Faster RCNN 网络提高了 16% ,并且对铝材小缺陷的检测能力也 得到明显的提高。

    Abstract:

    Aiming at the problems of low recognition rate of surface defects in industrial aluminum product and inaccurate location of small defects, etc. of the traditional detection algorithm, an improved deep learning network called Faster RCNN is proposed to detect 10 kinds of aluminum product surface defects. Firstly, after the data is enhanced, the feature pyramid network (FPN) structure is added to the backbone network to enhance the feature extraction ability for small defects, and then the ROI Align algorithm is used to replace ROI Pooling algorithm to obtain more accurate defect location information. Finally, the K-means algorithm is added to cluster the defect data to obtain an anchor more suitable for aluminum product defects. The experiment shows that the mean of the average precision (mAP50) of the improved network for aluminum product surface defect detection is 91. 20% , which is 16% higher than that of the original Faster RCNN network, and the detection ability of aluminum product small defects is also improved obviously.

    参考文献
    相似文献
    引证文献
引用本文

向 宽,李松松,栾明慧,杨 莹,何慧敏.基于改进 Faster RCNN 的铝材表面缺陷检测方法[J].仪器仪表学报,2021,(1):191-198

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码