光伏发电系统直流串联微弱故障电弧检测方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM501 TH86

基金项目:

河北省自然科学基金面上项目(E2019202481)、河北省自然科学重点基金(E2017202284)项目资助


Study on detection method of weak series DC fault arc in PV power generation systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏发电系统直流故障电弧因随机性强、信号微弱、容易受负载突变影响而难以准确检测。 根据光伏电池 U-I 输出特性, 文中分析光伏发电系统直流串联微弱故障电弧产生机理,通过搭建光伏发电系统故障电弧模拟实验平台,分析了微弱直流串联故 障电弧信号特性;进而提出了一种基于电流小波能量熵特征的检测直流串联微弱故障电弧的方法。 该方法先计算电流信号脉冲 因子,并利用阈值比较法来检测故障电弧。 在此基础上,进一步计算电流小波能量熵特征,并采用极限学习机(ELM)辨识微弱故 障电弧。 实验结果表明:所提方法不仅能检测强直流故障电弧,还能检测微弱直流故障电弧,且平均辨识率高达 98% 。

    Abstract:

    Fault arc in photovoltaic power generation system is difficult to accurately detect due to strong randomness, weak signal, and easy to be affected by load sudden change. According to the U-I output characteristics of photovoltaic cells, this paper analyzes the generation mechanism of DC series weak fault arc in photovoltaic power generation system, and analyzes the characteristics of weak DC series fault arc signal by building a photovoltaic power generation system fault arc simulation experimental platform, and then a method to detect weak DC series fault arc based on the wavelet energy entropy features of current signal is proposed. The proposed method firstly calculates the current pulse factor, which are used to detect the fault arc with threshold comparison method. On this basis, the current wavelet energy entropy features are calculated to identify weak fault arc based on extreme learning machine (ELM). The experimental results show that the proposed method can not only detect strong DC fault arc, but also detect weak DC fault arc with high average identification rate 98% .

    参考文献
    相似文献
    引证文献
引用本文

唐圣学,刁旭东,陈 丽,张继欣,姚 芳.光伏发电系统直流串联微弱故障电弧检测方法研究[J].仪器仪表学报,2021,(3):150-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码