基于极限学习机求解正问题的 ECT 图像重建
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TK39 TH701

基金项目:

国家自然科学基金(61973115)项目资助


Image reconstruction for electrical capacitance tomography based on forward problem solution using extreme learning machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在电容层析成像(ECT)图像重建迭代类算法中,通常采用线性正问题求解,以加快重建速度,由此产生重建误差。 针对 这一问题,提出了基于极限学习机(ELM)的非线性 ECT 正问题求解方法,ELM 网络输入为介电常数分布,其输出为预测的电容 测量值。 将该方法与传统的 Landweber 迭代算法相结合构成 ELM-Landweber 迭代算法进行图像重建。 为使样本具有较好的代 表性,物体分布位置及大小均随机生成,并计算相应的归一化电容值作为 ELM 网络训练及测试样本,对 ELM-Landweber 迭代算 法进行了仿真与静态实验,并与传统 Landweber 迭代算法进行比较。 实验结果表明,相较于传统 Landweber 迭代算法,采用 ELM-Landweber 迭代算法,其算法收敛速度显著提高,重建图像质量得到明显改善。 训练样本的平均图像相对误差由 0. 728 减 小至 0. 504,测试样本的平均图像相对误差由 0. 596 减小至 0. 475。

    Abstract:

    For the iterative image reconstruction algorithm of electrical capacitance tomography (ECT), linear forward problem solution is usually adopted to speed up image reconstruction. However, image reconstruction error is inevitably produced. In this paper, a nonlinear forward problem solution based on extreme learning machine (ELM) of ECT is proposed. The inputs and outputs of ELM network are permittivity distribution and predicted capacitance measurements, respectively. Image reconstruction is carried out based on the combination of the presented method and conventional Landweber iterative algorithm, which is named as ELM-Landweber iterative algorithm. In order to make the samples more representative, the distribution positions and sizes of objects in each phantom are randomly generated, and the corresponding normalized capacitance values are calculated as ELM network training and test samples. Simulation and static experiments are conducted for ELM-Landweber iterative algorithm and the reconstructed images are compared with those of conventional Landweber iterative algorithm. Experimental results show that the convergence speed of ELM-Landweber iterative algorithm is significantly enhanced, and the quality of the reconstructed image is obviously improved compared with conventional Landweber iterative algorithm. The average image relative error of training samples and test samples decreases from 0. 728 to 0. 504 and from 0. 596 to 0. 475, respectively.

    参考文献
    相似文献
    引证文献
引用本文

张立峰,戴 力.基于极限学习机求解正问题的 ECT 图像重建[J].仪器仪表学报,2021,(10):63-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码