基于改进 YOLOv4 算法的 PCB 缺陷检测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH862 TP391. 41

基金项目:

国家自然科学基金(51775181)项目资助


A defect detection method for PCB based on the improved YOLOv4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现用 PCB 缺陷检测方法存在效率低、误检率高、通用性低、实时性差等问题,提出基于改进 YOLOv4 算法的 PCB 缺 陷检测方法。 使用改进二分 K-means 聚类结合交并比(IoU)损失函数确定锚框,解决预设锚框不适用 PCB 小目标缺陷检测的 问题。 引用 MobileNetV3 作为特征提取网络,提升对 PCB 小目标缺陷的检测性能,同时方便部署在现场轻量化移动端。 引入 Inceptionv3 作为检测网络,利用多种卷积核进行运算满足 PCB 缺陷多类别的检测要求。 以 PCB_DATASET 数据集为测试对象, 将本文方法与 Faster R-CNN、YOLOv4、MobileNetV3-YOLOv4 等开展对比验证实验。 结果表明,本文方法均值平均精度(mAP)为 99. 10% ,模型大小为 53. 2 MB,检测速度为 43. 01 FPS,检测 mAP 分别提升 4. 88% 、0. 05% 、2. 01% ,模型大小分别减少 0、203. 2、 3. 3 MB,检测速度分别提升 29. 93、6. 37、0. 79 FPS,满足 PCB 工业生产现场高检测精度和检测速度要求。

    Abstract:

    The existing PCB defect detection methods has problems of low efficiency, high false detection rate, low generality and poor real-time performance. To address these issues, a PCB defect detection method based on the improved you only look once (YOLO) v4 algorithm is proposed. Anchor frames are determined by the improved dichotomous K-means clustering combined with intersection over union (IoU) loss function. In this way, the problem that the pre-defined anchor frames are not applicable to PCB small target defect detection is solved. MobileNetV3 is introduced as a feature extraction network to enhance the detection performance of small target defects on PCB, while facilitating deployment in the field on lightweight mobile terminals. Inceptionv3 is introduced as the detection network, which utilizes multiple convolutional kernels for operations to meet the requirements of PCB defect detection in multiple categories. The PCB_DATASET dataset is used as the test object. The proposed method is compared with Faster R-CNN, YOLOv4 and MobileNetV3-YOLOv4 for evaluation experiments. Results show that the mean average precision ( mAP) of the proposed method is 99. 10% , the model size is 53. 2 MB, and the detection speed is 43. 01 FPS. The detection mAP is improved by 4. 88% , 0. 05% , and 2. 01% , respectively. The model size is reduced by 0, 203. 2, and 3. 3 MB, respectively. And the detection speed is improved by 29. 93 FPS. The speed is increased by 29. 93, 6. 37, and 0. 79 FPS, which meets requirements of high inspection accuracy and inspection speed in PCB industrial production sites.

    参考文献
    相似文献
    引证文献
引用本文

伍济钢,成 远,邵 俊,阳德强.基于改进 YOLOv4 算法的 PCB 缺陷检测研究[J].仪器仪表学报,2021,(10):170-177

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码