基于卷积神经网络与扩展卡尔曼滤波的 单目视觉惯性里程计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242 TH74

基金项目:

福建省自然科学基金(2019J05024)、国家自然科学基金(61803089)项目资助


Utilizing extended Kalman filter to improve convolutional neural networks based monocular visual-inertial odometry
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单目相机采集室外图像易受环境光照影响、尺度存在不确定性的缺点,以及利用神经网络进行位姿估计不准确的 问题,提出一种基于卷积神经网络(CNN)与扩展卡尔曼滤波(EKF)的单目视觉惯性里程计。 采用神经网络取代传统里程计中 基于几何约束的视觉前端,将单目相机输出的估计值作为测量更新,并通过神经网络优化 EKF 的误差协方差。 利用 EKF 融合 CNN 输出的单目相机位姿和惯性测量单元(IMU)数据,优化 CNN 的位姿估计,补偿相机尺度信息与 IMU 累计误差,实现无人 系统运动位姿的更新和估计。 相比于使用单目图像的深度学习算法 Depth-VO-Feat,所提算法融合单目图像和 IMU 数据进行位 姿估计,KITTI 数据集中 09 序列的平动、转动误差分别减少 45. 4% 、47. 8% ,10 序列的平动、转动误差分别减少 68. 1% 、43. 4% 。 实验结果表明所提算法能进行更准确的位姿估计,验证了算法的准确性和可行性。

    Abstract:

    The outdoor images collected by monocular camera are easily affected by the light intensity. The scale of images is ambiguous. In addition, the pose estimation of convolution neural networks (CNNs) is not accurate. To address these issues, a monocular visioninertial odometry using CNN and the extended Kalman filter (EKF) is proposed. The CNN is used to replace the conventional odometry of the front-end vision based geometric constraints. The output of the monocular camera is used as the EKF measurement to correct the estimated pose of CNN. The error covariance of EKF is optimized by the CNN. The monocular camera pose data and the inertial measurement unit (IMU) data are fused in EKF to estimate the motion pose. The monocular scale informations and the cumulative errors of the IMU are compensated. Experimental results show that the proposed algorithm performs more precise pose estimation. The accuracy and feasibility of the algorithm are verified. Compared with the Depth-VO-Feat algorithm that relies on monocular images, the proposed algorithm combines monocular image and IMU data for pose estimation. The translation and rotation errors of the 09 sequence in KITTI dataset are reduced by 45. 4% and 47. 8% , respectively. The translation and rotation errors of 10 sequences are reduced by 68. 1% and 43. 4% , respectively.

    参考文献
    相似文献
    引证文献
引用本文

林立雄,郑佳春,黄国辉,蔡国玮.基于卷积神经网络与扩展卡尔曼滤波的 单目视觉惯性里程计[J].仪器仪表学报,2021,(10):187-197

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码