超声相干平面波复合成像的环形统计矢量加权
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TG115. 28 TH878

基金项目:

国家自然科学基金(62161028, 12064001, 52065049)项目资助


Circular statistics vector weighting for ultrasound coherent plane wave compounding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高超声相干平面波复合(CPWC)成像质量,本文提出了基于环形统计矢量(CSV)的加权算法。 该算法以延时信号 相位为环形统计样本,通过样本平均合矢量建立反映相位分布一致性程度的相干因子。 进一步地,根据波束形成及相干因子构 建数量的不同,提出了全孔径环形统计矢量(tCSV)加权算法。 结果表明,相比于 CPWC,CSV 和 tCSV 的散射靶点分辨率和囊肿 的对比度分别提高了至少 23. 67% 和 27. 69% ,CNR 值降低至多 39. 37% 。 与相干因子(CF)和符号相干因子( SCF)相比,虽然 CSV 和 tCSV 算法在分辨率和对比度上最大分别比之减小约 12. 83% 和 88. 31% ,但抑制背景噪声和保留目标靶点回波幅值的能 力较强,且 CNR 值比之提高了约 20% ,其成像质量具有更好地鲁棒性。

    Abstract:

    To improve the quality of ultrasonic coherent plane wave compounding ( CPWC) imaging, a weighting algorithm based on circular statistics vector (CSV) is proposed. In this algorithm, the phase of delayed signal is taken as the circular statistical samples and the coherence factor reflecting the consistency of phase distribution is established through the sample average resultant vector. Furthermore, according to the different number of beamforming and coherence factor construction, the weighting algorithm of total circular statistics vector (tCSV) is proposed. Compared with CPWC, results show that the scattering target resolution and cyst contrast radio of CSV and tCSV are increased by at least 23. 67% and 27. 69% , respectively. And the CNR value is decreased by up to 39. 37% . Compared with the coherence factor (CF) and the sign coherence factor (SCF), the maximum resolution and contrast of CSV and tCSV algorithms are reduced by about 12. 83% and 88. 31% , respectively. However, the ability to suppress background noise and retain the amplitude of target echo wave is better. The CNR value is improved by about 20% , and the image quality is more robust.

    参考文献
    相似文献
    引证文献
引用本文

陈 尧,孔庆茹,卢 超,石文泽,李秋锋.超声相干平面波复合成像的环形统计矢量加权[J].仪器仪表学报,2021,(10):263-272

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码