摘要:针对无线接收信号强度 (RSS) 受传播环境突发噪声影响从而引起指纹定位较大误差的问题,本文提出了一种指纹子 空间匹配结合密度峰值聚类 (DPC) 的定位算法,有效避免大误差点。 首先通过在线阶段目标 RSS 信号的接入点 (AP) 覆盖 向量,确定有效的参考位置点,并划分多个指纹子空间,利用改进的 WKNN 算法估计目标在每个子空间内的位置;最后利用 DPC 算法选取决策值最大的 S 个估计位置确定目标。 所提算法简单,不需要离线阶段的学习过程训练定位模型,尤其适合存在 大量 AP 的大范围室内定位区域。 实际环境中的定位实验表明,基于 DPC 的指纹子空间匹配算法比 WKNN 算法的定位精度提 升了 25% 左右,且在参考点分布密度为 1. 8 m × 1. 8 m 的实验条件下基本消除了 4 m 以上的大定位误差,有效提高了定位方法 的整体性能。