基于残差收缩网络的睡眠脑电分期
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH79

基金项目:

国家社科基金重大项目(20&ZD279)资助


Sleep EEG staging based on the residual shrinkage network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有睡眠分期方法存在特征提取不充分、类别间存在数据不平衡等问题,导致睡眠分期的精度不高。 基于残差收缩网 络设计高效的特征提取网络,同时,在损失函数中基于重加权思想设计了类别加权损失函数,通过调整损失函数有效解决了数 据不平衡对分类精度的影响。 实验结果表明,改进算法在 Sleep-EDF 数据集中的 Fpz-Cz、Pz-Oz 通道上,准确率分别为 85. 4% 和 82. 2% ,MF1 分别为 79. 6% 和 75. 4% ,均高于基准算法和目前先进的对比算法,证明了算法的有效性和先进性。

    Abstract:

    For the exiting staging methods, the accuracy is limited by insufficient feature extraction and class imbalance. To solve the problem, the residual shrinkage network is applied to design a convolutional neural network to extract feature efficiently. Meanwhile, the idea of re-weighting is used to design the loss function to address the problem that N1 stage gets low accuracy due to less samples. Finally, experiments are designed based on data of the Fpz-Cz and Pz-Oz channel in the Sleep-EDF dataset. The accuracy rates are 85. 4% and 82. 2% , respectively. The MF1 values are 79. 6% and 75. 4% , respectively. Results show that the method achieves higher accuracy and MF1 than the benchmark algorithm and current advanced comparison algorithms. It proves the effectiveness and advancement of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

陈玲玲,毕晓君.基于残差收缩网络的睡眠脑电分期[J].仪器仪表学报,2022,43(2):148-155

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码