多策略改进麻雀算法与 BiLSTM 的变压器故障诊断研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM411 TH165. 3

基金项目:

国家自然科学基金(51974151,71771111)、辽宁省高等学校国(境)外培养项目(2019GJWZD002)、辽宁省高等学校创新团队项目(LT2019007)、辽宁省教育厅科技项目(LJ2019QL015)、辽宁省高等学校基本科研项目(LJKZ0352)资助


Research on transformer fault diagnosis based on the improved multi-strategy sparrow algorithm and BiLSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对变压器故障诊断精度低的问题,提出了一种多策略改进麻雀算法(MISSA)与双向长短时记忆网络(BiLSTM)的变 压器故障诊断模型。 基于油中溶解气体分析(DGA)技术,结合无编码比值方法提取变压器 9 维故障特征作为模型输入进行网 络训练,输出层采用 Softmax 函数得到故障诊断类型;采用 Logistic 混沌映射、均匀分布的动态自适应权重以及动态拉普拉斯算 子来对麻雀搜索算法(SSA)进行改进;在初始解集内,利用 MISSA 对目标超参数进行寻优,使变压器故障诊断精度最优,并结合 核主成分分析(KPCA) 对故障特征指标降维,加快模型收敛速度。 结果表明,提出的模型诊断精度为 94% 与 PSO-BiLSTM、 GWO-BiLSTM 和 SSA-BiLSTM 故障诊断模型相比,分别提高了 11. 33% 、8. 67% 、6% ,验证了本文方法能够有效地提高变压器的 故障诊断性能。

    Abstract:

    To enhance the low precision of transformer fault diagnosis, a model based on multi-strategy improved sparrow algorithm (MISSA) and bidirectional long short-term memory network (BiLSTM) is proposed. Based on dissolved gas analysis (DGA) technology in oil, the uncoded ratio method is used to extract 9-dimensional fault features of the transformer as the input of the model for network training. The Softmax function is used to obtain fault diagnosis types in the output layer. The sparrow search algorithm ( SSA) is improved by logistic chaos mapping, uniformly distributed dynamic adaptive weights and dynamic Laplacian operator. In the initial solution set, the multi-strategy improved Sparrow algorithm (MISSA) is used to optimize the target hyperparameters. In this way, the transformer fault diagnosis accuracy is optimized, and the kernel principal component analysis (KPCA) is used to reduce the dimension of fault feature indexes, and the convergence speed of the model is accelerated. Compared with PSO-BiLSTM, GWA-BiLSTM and SSABILSTM fault diagnosis models, the diagnostic accuracy of the proposed model is 94% , which is 11. 33% , 8. 67% and 6% higher than those of PSO-BiLSTM, GWA-BiLSTM and SSA-BiLSTM fault diagnosis models, respectively. It is verified that the proposed method can effectively improve the performance of transformer fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

王雨虹,王志中,付 华,王淑月,王留洋.多策略改进麻雀算法与 BiLSTM 的变压器故障诊断研究[J].仪器仪表学报,2022,43(3):87-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码