改进稠密块轻量化神经网络的管道泄漏孔径识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH865

基金项目:

河北省自然科学基金(E2020203061,E2016203223)、河北省高等学校科学技术研究项目(QN2019133)、河南省青年人才托举计划(2021HYTP014)项目资助


Pipeline leakage aperture recognition based on lightweight neural network with the improved dense block
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度神经网络的管道泄漏孔径识别方法虽然识别率高,但因结构复杂造成参数量大、内存占用大,极大地限制了其在资 源有限的工业环境及实时处理中的应用。 提出一种优化卷积改进稠密块的轻量化神经网络用于管道泄漏孔径识别。 首先将深 度可分离卷积与异构卷积结合,构造了新的多卷积稠密块实现泄漏信号的特征提取;之后采用卷积注意力机制对特征进行权重 划分,实现特征的重要性区分;最后通过分类器获取结果。 实验结果表明,本文方法识别准确率达到了 96. 59% ,参数量仅为 781 KB。 本文方法在保证高识别准确率的同时,参数量及浮点数大幅下降,训练时间也有所减少,改善了实时响应能力,对于实 际工业监测应用有指导意义。

    Abstract:

    The identification method of pipeline leakage aperture based on the deep neural network has a high identification rate. However, its application in industrial environment and real-time processing is greatly limited due to the large number of parameters and large memory consumption due to its complex structure. To address this issue, an optimized convolution improved dense block lightweight neural network is proposed for the pipeline leak aperture identification. Firstly, a new multi-convolutional dense block is constructed by combining the deeply separable convolution with the heterogeneous convolution to extract the features of leakage signals. Then, the convolutional attention mechanism is used to classify the weight of features to realize the importance distinction of features. Finally, the results are obtained by classifier. Experimental results show that the recognition accuracy of the proposed method is 96. 59% , and the number of parameters is only 781 KB. While ensuring high recognition accuracy, the number of parameters and floating point numbers are greatly reduced, the training time is also reduced, and the real-time response ability is improved, which has guiding significance for practical industrial monitoring applications.

    参考文献
    相似文献
    引证文献
引用本文

孙洁娣,王利轩,温江涛,肖启阳.改进稠密块轻量化神经网络的管道泄漏孔径识别[J].仪器仪表学报,2022,43(3):98-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码