一种基于动态剔除和场景匹配的 Robust SLAM 方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH86

基金项目:

国家自然科学基金(61973160)项目资助


A Robust SLAM method based on eliminating dynamic points and matching scenes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对动态环境中移动物体和结构变形引起激光雷达自主定位精度下降的问题,本文提出了一种 Dynamic Lego-loam 方 法。 为减小动态点误匹配给激光雷达里程计带来的误差,该方法首先在里程计精解算之前,提出了一种基于先验信息的点云粗 配准算法用以剔除动态点,提高了激光雷达里程计的匹配精度。 然后,针对环境中的动态变化带来的误差累积和建图重影问 题,利用场景匹配的方法优化了传统基于半径的闭环检测方法。 大范围采用基于半径的粗搜索快速定位至局部场景,小范围构 建区域高度差描述符精确匹配至最相似历史帧,最终实现了精准的闭环检测并提高了动态环境中的建图精度。 实验结果表明, 在动态环境下,Dynamic Lego-loam 算法相较于 Lego-loam 算法自主定位精度提高了 63% 。

    Abstract:

    The moving objects and structural deformation in dynamic environments bring the degradation of autonomous positioning accuracy of lidar. To address this issue, a Dynamic Lego-loam method is proposed in this article. To reduce the error caused by the mismatch of dynamic points to the lidar odometry, a point cloud coarse registration method is firstly proposed, which is based on dynamic point culling before the odometer′s precise calculation. The accuracy of laser odometry is improved. Then, to reduce the error accumulation and mapping ghosting caused by the dynamic environment, the traditional radius-based closed-loop detection method is optimized by the scene matching method. The radius-based rough search is used to quickly locate the local scene in a large range. The regional height difference descriptor is established in a small range to accurately match the most similar historical frames, which realizes an accurate closed-loop detection and improves the mapping accuracy in the dynamic environment. Compared with the Lego-loam algorithm, experimental results show that the Dynamic Lego-loam algorithm improves the autonomous positioning accuracy by 63% in a dynamic environment.

    参考文献
    相似文献
    引证文献
引用本文

邱佳月,赖际舟,方 玮,吕 品,李志敏.一种基于动态剔除和场景匹配的 Robust SLAM 方法[J].仪器仪表学报,2022,43(3):249-257

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码