抗过载环形 MEMS 固体波动陀螺设计加工与测试
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(51705477)、中央军委装备发展部快速扶持项目(80917010501)、基础加强计划技术领域基金(2021JCJQJJ0315)、山西省基础研究计划面上项目(20210302123020)、山西省重点研发计划项目(202003D111004)资助


Design, fabrication and test of high overload resistance MEMS silicon-based ring wave gyroscope
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对传统 MEMS 振动陀螺在经历高过载过程无法存活且冲击前后参数变化大的问题,开展了抗高过载 MEMS 固 体波动环形微机械陀螺设计、加工和测试方面的研究工作。 首先,提出了全对称梁的陀螺结构形式,该结构能够有效的减小冲 击过程在结构中造成的应力残留,配合止挡机构以及灌封技术能够提升陀螺在冲击过程中的存活能力,并在此基础上推导了陀 螺的动力学方程和敏感轴冲击振荡运动函数,指出了敏感轴冲击模态的固有频率越高、品质因数越小则越有利于提高陀螺在敏 感轴上的抗冲击特性。 其次,利用有限元分析软件对陀螺结构进行了模态分析和冲击特性仿真,结果显示在 15 000 g@ 10 ms 的冲击作用下,陀螺的最大位移和应力分别为 9. 46 μm 和 99. 6 MPa,保证了陀螺结构具有较好的抗冲击裕度。 再次,利用较为 成熟的玻璃-硅键合和深硅刻蚀工艺实现了陀螺结构的加工,结合陶瓷封装实现了陀螺结构的真空封装,并基于驱动闭环和检 测开环回路搭建了陀螺的测试系统。 最后,在实验室环境下利用冲击台实现了对陀螺样机的冲击测试,冲击过程(脉宽 0. 6 ms)出现了多个 5 000 g 以上的峰值,最大峰值为 16 050 g,陀螺响应时间约为 1 s,冲击前后陀螺零位变化小于 1% ,验证了 本文研制样机的抗过载能力。

    Abstract:

    The traditional micro electro mechanical system (MEMS) vibrating gyroscope cannot survive in the process of high overload and the parameters change greatly before and after the impact. To address these issues, this article proposes the MEMS solid ring wave gyroscope, including its design, processing and testing. Firstly, a gyroscope structure with a fully symmetrical beam and potting technology is proposed, which can effectively reduce the residual stress in the structure during the impact process. The stop mechanism is utilized to enhance the viability of the gyroscope during the impact process. Based on this structure, the dynamic equation of the gyroscope and the impact oscillation motion function of the sensitive axis are derived. And the sensitive axis impact mode is investigated that the higher natural frequency and the smaller quality factor can improve the anti-shock performance of the gyroscope on the sensitive axis. Secondly, the modal analysis and impact characteristic simulation of the gyro structure are implemented by using the finite element analysis software. Results show that the maximum displacement and stress of the gyroscope structure are 9. 46 μm and 99. 6 MPa, respectively, when the shock amplitude is 15 000 g with 10 ms wide pulse. These results ensure that the gyroscope structure has a good anti impact margin. Thirdly, the mature glass silicon bonding and deep silicon etching process are used to realize the processing of the gyroscope structure. And the vacuum packaging of the gyroscope structure is realized by combining ceramic packaging. The test system of the gyroscope is established by the driving closed loop and detection open loop. Finally, in the laboratory environment, the impact test of the gyroscope prototype is realized by using the impact platform. During the impact process (pulse width 0. 6 ms), there are several peaks of more than 5 000 g. The maximum peak value is 16 050 g, the response time of the gyroscope is about 1 s, and the change of the gyroscope zero position before and after the impact is less than 1% . The anti-overload ability of the prototype developed in this article is verified.

    参考文献
    相似文献
    引证文献
引用本文

曹慧亮,郭天琪,申 冲.抗过载环形 MEMS 固体波动陀螺设计加工与测试[J].仪器仪表学报,2022,43(5):1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码