融合改进 YOLOv5 算法的图像全站仪全自动测量方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH721

基金项目:

国家自然科学基金(61975228,62005307)项目资助


Fully automated measurement method of image total station based on the improved YOLOv5 algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对图像全站仪在无棱镜合作工作模式下无法实现目标点全自动测量的问题,提出一种融合改进 YOLOv5 算法的图像 全站仪全自动测量方法。 应用融合卷积注意力机制模块的 YOLOv5 算法,实现了反射片靶标的广角镜头识别与检测;应用目标 自动照准算法,实现了反射片靶标中心的长焦镜头精确照准,进而实现目标点位置坐标的全自动测量。 借助自研的图像全站仪 开展了反射片靶标的识别与检测实验和目标点全自动测量实验。 实验结果表明,利用改进的 YOLOv5 算法对反射片靶标的识 别与检测的准确率可达 98. 65% ;目标点全自动测量方法具有与人工照准测量方法相当的测量精度且测量效率较后者提高了 1. 5 倍。 所提方法具有较高的测量精度和测量效率,可广泛应用于无人值守的全自动测量工作场合。

    Abstract:

    The image total station cannot achieve the fully automated measurement of the target point in the prism-free cooperative working mode. To address this issue, a fully automated measurement method of image total station based on the improved YOLOv5 algorithm is proposed. The YOLOv5 algorithm fused with the convolutional block attention module is used to realize the wide-angle camera identification and detection of the reflector. And the target automatic aiming algorithm is applied to realize the accurate aiming of the telephoto camera at the center of the reflector, which realizes the fully automated measurement of the position coordinates of the target point. With the help of the self-developed image total station, the identification and detection experiment of the reflector and the fully automated measurement experiment of the target point are carried out. Experimental results show that the accuracy of identifying and detecting reflector targets by the improved YOLOv5 algorithm can reach 98. 65% . Compared with manual photometric measurement method, the fully automated measurement method of target point has comparable measurement accuracy and increases the measurement efficiency by 1. 5 times. The proposed method has high measurement accuracy and measurement efficiency, which can be widely used in the unattended and fully automated measurement work occasions.

    参考文献
    相似文献
    引证文献
引用本文

郎 松,曹 选,张艳微,高若谦,巩 岩.融合改进 YOLOv5 算法的图像全站仪全自动测量方法[J].仪器仪表学报,2022,43(5):120-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码