基于梯度聚类的有序点云边缘优化提取方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH164

基金项目:

国家自然科学基金面上项目(61973065,61973063)、辽宁省科技厅联合开放基金机器人学国家重点实验室开放基金资助项目(2020KF1202)、中央高校基本科研业务业务费专项基金项目(N2226002)资助


Edge optimized extraction from the organized point-cloud data base on the gradient clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应用传统的 2D 边缘检测器检测低分辨率深度图中物体边缘时,边缘检测精度较差,召回率低;而当前基于 3D 点云的 边缘提取方法也存在实时性差、抗干扰能力弱等缺点。 为此,提出一种基于梯度聚类的边缘优化提取方法,实现从有序点云中 快速、稳定地检测物体的边缘。 首先,通过邻域点距离分析滤除飞行像素噪声,消除边缘误检;其次,提出一种基于梯度聚类的 边缘点/ 非边缘点分离方法,快速获取物体的粗边缘;最后,结合快速平行细化算法与掩膜滤波,优化粗边缘,获得物体精确边 缘。 在公共数据集和 TOF 相机实测数据上进行实验验证。 结果表明,提出方法的实时性与检测精度均优于现有方法,在实测 数据中的边缘检测精度达 89% ,FPS 达 28 fps。

    Abstract:

    When the traditional 2D edge detectors are applied to detect object edges in low-resolution depth images, the detection accuracy is poor and the recall rate is low. At present, the existing edge extraction methods based on the 3D point-cloud data have poor real-time performance and weak anti-interference ability. To address these issues, an edge optimized extraction method based on the gradient clustering is proposed to fast and stably detect the 3D edges of objects from the organized point-cloud data. First, the flying pixel noise is filtered to eliminate false detection on the edge by analyzing the distance between neighborhood points. Secondly, an edge / noedge point separation method based on the gradient clustering is proposed to fast extract the rough edges of objects. Finally, the combination of the fast parallel thinning and the mask filtering is employed to optimize the rough edge. In this way, the precise edges are obtained. Experiments are implemented on the public datasets and a dataset collected by a TOF depth camera to evaluate the proposed method. Results show that the proposed method is superior to the existing methods in the real-time and detection accuracy. With the real data, the edge detection is accuracy 89% , and the FPS achieves 28 fps.

    参考文献
    相似文献
    引证文献
引用本文

陈 浩,丁其川,潘 磊.基于梯度聚类的有序点云边缘优化提取方法[J].仪器仪表学报,2022,43(5):165-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码