基于多阶通道响应对称双线性卷积神经网络的 分布式压力识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH82 TP24

基金项目:

陕西省重点研发计划(2021ZDLGY0201)、芜湖西电产学研合作专项资金(XWYCXY012021003)项目资助


Hybrid-order channel response symmetric bilinear convolutional neural network for distributed pressure recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前基于传感阵列的分布式压力识别方法,通常先将压力信息表征为图像,然后再进行特征的提取与分类,但存在两个 问题:传感阵列密度有限,压力图像分辨率低;柔性传感阵列存在弹性耦合,压力图像边缘模糊。 本文提出了一种多阶通道响应 对称双线性卷积神经网络(HoSB-CNN)。 首先,构建通道注意力响应 CNN,通过给不同特征依照显著性赋权值以提升一阶特征 的描述能力。 其次提出对称双线性特征,引入二阶特性提高 CNN 对边缘和纹理的敏感度,并利用其结构对称性降低网络复杂 度。 最后,提出多阶特征混合策略提升网络的非线性拟合能力。 此外,通过自制数据采集平台和 8×8 传感阵列,建立压力字母 数据集用于 HoSB-CNN 的验证。 结果表明,该算法获得了 98. 11% 的准确率。

    Abstract:

    The distributed pressure recognition method based on sensing arrays is usually to characterize pressure information as an image. Then, features for classification are extracted. However, there are still two problems. The first is the limited density of sensing arrays which leads to low resolution of the formed pressure images. The second is the existence of elastic coupling in flexible sensing arrays, which results in blurred edges of the pressure images. In this article, a hybrid-order channel response symmetric bilinear convolutional neural network (HoSB-CNN) is proposed. Firstly, the channel attention response CNN is constructed for enhancing the representation of first-order features. Secondly, symmetric bilinear features are proposed to improve the sensitivity to edges. In addition, due to the structural symmetry of the symmetric bilinear features, only the triangular matrix is retained in the storage and transfer of the features, which could reduce the network complexity. Finally, a multi-order feature hybrid strategy is used to enhance the nonlinear fitting ability of the network. And a press-letter dataset is constructed by self-built data collection platform and 8 × 8 sensor array to evaluate the HoSB-CNN. Results show that the accuracy of the proposed method is 98. 11% .

    参考文献
    相似文献
    引证文献
引用本文

褚 洁,蔡觉平,李 龙,王帅利.基于多阶通道响应对称双线性卷积神经网络的 分布式压力识别[J].仪器仪表学报,2022,43(6):92-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码