摘要:针对智能车未知运动下的多目标跟踪问题,提出一种基于一致性点漂移的视觉多目标跟踪方法。 首先利用一致性点漂 移算法构建智能车未知运动模型,得到局部目标状态变换关系;其次建立一种基于外观相似性和运动一致性的自适应特征融合 函数;最后通过匈牙利算法求解轨迹与检测的对应关系,以实现面向智能车的鲁棒数据关联。 实验结果表明,与现有的 5 种主 流目标跟踪方法对比,所提方法在多个指标方面具有更好的效果,相较于结构约束(SCEA)算法,在 KITTI 数据集中较大运动场 景下,所提方法多目标跟踪准确率提高了 6. 3% ,在实拍实验数据下,所提方法多目标跟踪准确率提高了 7. 3% ,证明该算法能 在智能车未知运动下有效的进行多目标跟踪。